参考文献/References:
[1]TAKAHASHI N, PHINNEY B O, MACMILLAN J. Gibberellins[M]. New York: Springer, 1991.
[2]MACMILLAN J. Occurrence of Gibberellins in Vascular Plants, Fungi, and Bacteria[J]. Journal of Plant Growth Regulation, 2001, 20(4): 387-442.
[3]HEDDEN P, PHILLIPS A L. Gibberellin metabolism: new insights revealed by the genes[J]. Trends Plant Sci, 2000, 5(12): 523-530.
[4]SUN T P. Gibberellin metabolism, perception and signaling pathways in Arabidopsis[J]. Arabidopsis Book, 2008, 6: 103.
[5]YAMAGUCHI S. Gibberellin metabolism and its regulation[J]. Annu Rev Plant Biol, 2008, 59: 225-251.
[6]HEDDEN P, PROEBSTING W M. Genetic analysis of gibberellin biosynthesis[J]. Plant Physiol, 1999, 119(2): 365-370.
[7]PHILLIPS A L. Gibberellins in Arabidopsis[J]. Plant Physiology and Biochemistry, 1998, 36(1): 115-124.
[8]BOHLMANN J, MEYER-GAUEN G, CROTEAU R. Plant terpenoid synthases: molecular biology and phylogenetic analysis[J]. Proc Natl Acad Sci USA, 1998, 95(8): 4126-4133.
[9]PETERS R J, CROTEAU R B. Abietadiene synthase catalysis: conserved residues involved in protonation-initiated cyclization of geranylgeranyl diphosphate to (+)-copalyl diphosphate[J]. Biochemistry, 2002, 41(6): 1836-1842.
[10]SUN T P, KAMIYA Y. The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis[J]. Plant Cell, 1994, 6(10): 1509-1518.
[11]OCHS D, KALETTA, ENTIAN K D,et al. Cloning, expression, and sequencing of squalene-hopene cyclase, a key enzyme in triterpenoid metabolism[J]. Journal of bacteriology, 1992, 174(1): 298-302.
[12]WENDT K U, SCHULZ G E. Isoprenoid biosynthesis: manifold chemistry catalyzed by similar enzymes[J]. Structure, 1998, 6(2): 127-133.
[13]SONNHAMMER E L, EDDY S R, BIRNEY E, et al. Pfam: multiple sequence alignments and HMM-profiles of protein domains[J]. Nucleic Acids Res, 1998, 26(1): 320-322.
[14]TAMURA K, PETERSON D, PETERSON N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Mol Biol Evol, 2011, 28(10): 2731-2739.
[15]陈旭升,狄佳春,许乃银,等. 陆地棉超矮杆突变性状质量遗传规律分析[J]. 遗传, 2007, 29(4): 471-474.
[16]YAMAGUCHI S, SUN T, KAWAIDE H, et al. The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis[J]. Plant Physiol, 1998, 116(4): 1271-1278.
[17]WENDEL J F, CRONN R C. Polyploidy and the evolutionary history of cotton[J]. Advances in Agronomy, 2003, 78(2): 139-186.
[18] Paterson A H. Cotton Genomics[M]. Berlin Heidelberg: Springer, 2010:45-63.
[19]景超,马晓杰,狄佳春,等. 陆地棉超矮杆突变体基因的初步定位[J]. 遗传, 2011, 33(12): 1393-1397.
[20]吴巧娟,肖松华,刘剑光,等. 棉花半矮秆基因的定位[J]. 江苏农业学报, 2012, 28(1): 214-215.
相似文献/References:
[1]赵君,刘剑光,吴巧娟,等.棉花种质种仁含油量测定及其遗传多样性分析[J].江苏农业学报,2015,(05):975.[doi:doi:10.3969/j.issn.1000-4440.2015.05.006]
ZHAO Jun,LIU Jian-guang,WU Qiao-juan,et al.Kernel oil content and genetic diversity of upland cotton germplasm[J].,2015,(01):975.[doi:doi:10.3969/j.issn.1000-4440.2015.05.006]
[2]杨长琴,刘瑞显,张国伟,等.花铃期干旱对棉纤维素累积及纤维比强度的影响[J].江苏农业学报,2015,(06):1218.[doi:doi:10.3969/j.issn.1000-4440.2015.06.005]
YANG Chang-qin,LIU Rui-xian,ZHANG Guo-wei,et al.Cellulose accumulation and fiber strength affected by drought during flowering and bolling stage in cotton[J].,2015,(01):1218.[doi:doi:10.3969/j.issn.1000-4440.2015.06.005]
[3]杨长琴,刘瑞显,张国伟,等.花铃期渍水对棉铃对位叶光合速率、物质累积及产量的影响[J].江苏农业学报,2015,(04):732.[doi:10.3969/j.issn.1000-4440.2015.04.004]
YANG Chang-qin,LIU Rui-xian,ZHANG Guo-wei,et al.Photosynthesis of subtending leaves of bolls, dry matter accumulation and cotton yield in response to waterlogging during flowering and boll-forming stage[J].,2015,(01):732.[doi:10.3969/j.issn.1000-4440.2015.04.004]
[4]刘雅辉,王秀萍,鲁雪林,等.棉花耐盐相关序列扩增多态性(SRAP)分子标记筛选[J].江苏农业学报,2015,(03):484.[doi:10.3969/j.issn.1000-4440.2015.03.003]
LIU Ya-hui,WANG Xiu-ping,LU Xue-lin,et al.Selection of sequence-related amplified polymorphism molecular marker associated with salt tolerance of cotton[J].,2015,(01):484.[doi:10.3969/j.issn.1000-4440.2015.03.003]
[5]王为,叶泗洪,潘宗瑾,等.棉花分子标记冗余性检测与评价的方法[J].江苏农业学报,2015,(02):247.[doi:10.3969/j.issn.1000-4440.2015.02.004]
WANG Wei,YE Si-hong,PAN Zong-jin,et al.An approach to detecting and evaluating molecular marker redundancy in cotton[J].,2015,(01):247.[doi:10.3969/j.issn.1000-4440.2015.02.004]
[6]郭琪,徐珍珍,黄芳,等.棉花HKT基因家族的全基因组分析[J].江苏农业学报,2017,(05):975.[doi:doi:10.3969/j.issn.1000-4440.2017.05.003]
GUO Qi,XU Zhen-zhen,HUANG Fang,et al.Genome-wide analysis of high-affinity potassium transporter gene family in cotton[J].,2017,(01):975.[doi:doi:10.3969/j.issn.1000-4440.2017.05.003]
[7]黄芳,徐珍珍,孟珊,等.盐胁迫下棉花LTR-反转座子的转录激活及在耐盐相关基因发掘中的应用[J].江苏农业学报,2017,(06):1220.[doi:doi:10.3969/j.issn.1000-4440.2017.06.004]
HUANG Fang,XU Zhen-zhen,MENG Shan,et al.The identification of long terminal repeat retrotransposons (LTR-RTs) with transcription activity under salt stress and its application in screening the candidate genes related to salt-tolerant in cotton[J].,2017,(01):1220.[doi:doi:10.3969/j.issn.1000-4440.2017.06.004]
[8]徐剑文,孔杰,赵君,等.盐胁迫下棉花萌发、成苗和产量相关性状的QTL定位[J].江苏农业学报,2018,(05):972.[doi:doi:10.3969/j.issn.1000-4440.2018.05.002]
XU Jian-wen,KONG-Jie,ZHAO Jun,et al.Identification of QTLs conferring the traits related to germination, seedling survival and production of cotton under salt stress[J].,2018,(01):972.[doi:doi:10.3969/j.issn.1000-4440.2018.05.002]
[9]韦陈华,邓国强,颜超,等.高密度重化控技术对小麦后直播棉花成铃时空分布的调控[J].江苏农业学报,2018,(05):1022.[doi:doi:10.3969/j.issn.1000-4440.2018.05.008]
WEI Chen-hua,DENG Guo-qiang,YAN Chao,et al.Impact of high planting density with heavy chemical regulation technique on boll spatio-temporal distribution of cotton under direct seeding modes after wheat harvested[J].,2018,(01):1022.[doi:doi:10.3969/j.issn.1000-4440.2018.05.008]
[10]赵君,张大伟,徐剑文,等.陆地棉VR018抗黄萎病QTL定位[J].江苏农业学报,2018,(06):1232.[doi:doi:10.3969/j.issn.1000-4440.2018.06.005]
ZHAO Jun,ZHANG Da-wei,XU Jian-wen,et al.Quantitative trait locus mapping for Verticillium wilt resistance in upland cotton VR018[J].,2018,(01):1232.[doi:doi:10.3969/j.issn.1000-4440.2018.06.005]