[1]李国锋,葛敏,吕远大.Opaque2转录因子对玉米α-醇溶蛋白基因家族成员表达的影响[J].江苏农业学报,2015,(06):1224-1231.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
 LI Guo-feng,GE Min,L Yuan-da.Differential expression of α-zein family genes regulated by Opaque2 transcription factor[J].,2015,(06):1224-1231.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
点击复制

Opaque2转录因子对玉米α-醇溶蛋白基因家族成员表达的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年06期
页码:
1224-1231
栏目:
遗传育种·生理生化
出版日期:
2015-12-31

文章信息/Info

Title:
Differential expression of α-zein family genes regulated by Opaque2 transcription factor
作者:
李国锋1葛敏2吕远大2
(1.江苏省农业科学院六合基地,江苏南京210014;2.江苏省农业科学院农业生物技术研究所/江苏省农业生物学重点实验室,江苏南京210014)
Author(s):
LI Guo-feng1GE Min2L Yuan-da2
(1.Luhe Research Station,Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.Institute of Agro-biotechnology,Jiangsu Academy of Agricultural Sciences/Provincial Key Laboratory of Agrobiology,Nanjing 210014, China)
关键词:
玉米α-醇溶蛋白基因家族表达谱Opaque 2
Keywords:
maizeα-zeinexpression profilingOpaque 2
分类号:
S513
DOI:
doi:10.3969/j.issn.1000-4440.2015.06.006
文献标志码:
A
摘要:
醇溶蛋白是玉米主要的储存蛋白,其中α-醇溶蛋白含量最为丰富,对玉米籽粒品质有重要影响。本研究利用全基因组数据鉴定α-醇溶蛋白基因家族,并从基因保守motif、玉米籽粒不同发育时期基因的表达谱以及转录因子Opaque2对该家族成员表达的影响3个方面分析玉米α-醇溶蛋白基因家族。结果显示,玉米参考基因组中存在39个α-醇溶蛋白基因,其中z1A、z1B、z1C和z1D 4个亚族成员分别为12个、8个、14个和5个。基因保守motif分析发现该家族基因序列高度保守。表达谱分析结果显示该家族表达模式差异较大,其中z1A亚族在籽粒发育时期表达量最高。利用RNA-seq数据剖析在种子发育阶段Opaque 2(O2)野生型和突变体编码该家族成员的表达差异,结果显示O2突变体中z1C亚族成员表达显著下调,z1A亚族表达略有下调,z1B和z1D亚族成员表达量没有显著的变化。本研究在重新注释α-醇溶蛋白家族成员信息的基础上,对该家族的表达谱进行了分析,为今后玉米籽粒品质育种提供了必要遗传信息。
Abstract:
Zein proteins are main repository of nitrogen, which comprise approximately 50% of the total proteins in mature kernels. Zein proteins can be divided into four groups based on their molecular weights, α,β,γ and δ zeins. In contrast to the β,γ and δ zeins which were encoded by relatively small gene families, α-zein proteins have four different gene sub-families (z1A, z1B, z1C, and z1D) and about 39 genes on maize B73 genome. α-zeingene expression profiling analysis showed that their expression patterns diverged greatly and z1A had the highest expression level. Conserverd motif analysis revealed α-zein gene family was highly conserved. Opaque 2 mutant, carrying a leucine-zipper motif, downregulates α-zein genes expression, resulting in a so called opaque phenotype, which is widely employed in the creation of germplasm to develop quality protein maize because of the increased lysine and tryptophan accumulation. However, expression analyses of specific gene member of α-zein regulated by Opaque 2 were not well characterized. In this study, RNA-seq was employed to dissect the individual gene expression at seed developing stages and compared mRNA abundance between wild type and Opaque 2. The results exhibited that Opaque 2 majorly downregulated the expression of z1C subfamily, slightly reduced z1A genes expression, and played insignificant roles in z1B and z1D genes expression. Together with the genome annotation of α-zein family and their responding expression profiling, the study implied the genetic information for future improvement of maize grain quality.

参考文献/References:

[1]LARKINS B A, BRACKER C E, TSAI C Y. Storage protein synthesis in maize: isolation of zein-synthesizing polyribosomes[J]. Plant Physiology, 1976, 57(5): 740-745.
[2]康美玲,田忠景,张倩倩. 利用醇溶蛋白电泳图谱分析不同玉米品种的遗传多样性[J]. 江苏农业科学,2013,41(10): 70-72.
[3]HARTINGS H, LAURIA M, LAZZARONI N, et al. The zea mays mutants opaque-2 and opaque-7 disclose extensive changes in endosperm metabolism as revealed by protein, amino acid, and transcriptome-wide analyses[J]. BMC Genomics,2011, 12: 41.
[4]HOLDING D R, HUNTER B G, CHUNG T, et al. Genetic analysis of opaque2 modifier loci in quality protein maize[J]. Theor Appl Genet, 2008, 117(2): 157-170.
[5]PRASANNA B M, VASAL S K, KASSAHUN B, et al. Quality protein maize [J]. Current Science-Bangalore, 2001, 81 (10): 1308-1319. 
[6]WU Y, MESSING J. Novel genetic selection system for quantitative trait loci of quality protein maize[J]. Genetics,2011, 188(4): 1019-1022.
[7]SONG R, MESSING J. Contiguous genomic DNA sequence comprising the 19-kD zein gene family from maize[J]. Plant Physiology, 2002, 130(4): 1626-1635.
[8]SONG R, LLACA V, LINTON E, et al. Sequence, regulation, and evolution of the maize 22-kD alpha zein gene family[J]. Genome Research, 2001, 11(11): 1817-1825.
[9]SONG R, MESSING J. Gene expression of a gene family in maize based on noncollinear haplotypes[J]. Proc Natl Acad Sci USA, 2003, 100(15): 9055-9060.
[10]FENG L, ZHU J, WANG G, et al. Expressional profiling study revealed unique expressional patterns and dramatic expressional divergence of maize alpha-zein super gene family[J]. Plant MolBiol, 2009, 69(6): 649-659.
[11]SCHMIDT R J, BURR F A, BURR B. Transposon tagging and molecular analysis of the maize regulatory locus opaque-2[J]. Science, 1987, 238(4829): 960-963.
[12]HARTINGS H, MADDALONI M, LAZZARONI N, et al. The 〖WTBX〗O2 gene which regulates zein deposition in maize endosperm encodes a protein with structural homologies to transcriptional activators[J]. EMBO J, 1989, 8(10): 2795-2801.
[13]MULLER M, DUES G, BALCONI C, et al. Nitrogen and hormonal responsiveness of the 22 kDa alpha-zein and b-32 genes in maize endosperm is displayed in the absence of the transcriptional regulator Opaque-2[J]. Plant Journal, 1997, 12(2): 281-291.
[14]BAILEY T L, BODEN M, BUSKE F A, et al. MEME SUITE: tools for motif discovery and searching[J]. Nucleic Acids Res, 2009, 37(Web Server issue): W202-W208.
[15]CHEN J, ZENG B, ZHANG M, et al. Dynamic transcriptome landscape of maize embryo and endosperm development[J]. Plant Physiology, 2014, 166(1): 252-264.
[16]葛敏,吕远大,张体付,等. 玉米〖WTBX〗YABBY基因家族的全基因组鉴定与分析[J]. 江苏农业学报,2014,30(6): 1267-1272.
[17]LI C, QIAO Z, QI W, et al. Genome-wide characterization of cis-acting DNA targets reveals the transcriptional regulatory framework of opaque2 in maize[J]. Plant Cell, 2015, 27(3): 532-545.
[18]XU J H, MESSING J. Organization of the prolamin gene family provides insight into the evolution of the maize genome and gene duplications in grass species[J]. Proc Natl Acad Sci USA, 2008, 105(38): 14330-14335.
[19]MICLAUS M, XU J H, MESSING J. Differential gene expression and epiregulation of alpha zein gene copies in maize haplotypes[J]. PLoS Genetics, 2011, 7(6): e1002131.
[20]VICENTE-CARBAJOSA J, MOOSE S P, PARSONS R L, et al. A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2[J]. Proc Natl Acad Sci USA,1997, 94(14): 7685-7690.
[21]HWANG Y S, CICERI P, PARSONS R L, et al. The maize O2 and PBF proteins act additively to promote transcription from storage protein gene promoters in rice endosperm cells[J]. Plant Cell Physiology, 2004, 45(10): 1509-1518.
[22]WU Y, MESSING J. Rescue of a dominant mutant with RNA interference[J]. Genetics, 2010, 186(4): 1493-1496.
[23]WU Y, MESSING J. RNA interference-mediated change in protein body morphology and seed opacity through loss of different zein proteins[J]. Plant Physiology, 2010, 153(1): 337-347.

相似文献/References:

[1]宝华宾,梁帅强,吕远大,等.玉米籽粒蛋白含量Meta-QTL及候选基因分析[J].江苏农业学报,2016,(04):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
 BAO Hua-bin,LIANG Shuai-qiang,LYU Yuan- da,et al.Analysis of meta-QTL and candidate genes related to protein concentration in maize grain[J].,2016,(06):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
[2]印志同,秦秋霞,阚欣,等.玉米快速叶绿素荧光参数全基因组关联分析[J].江苏农业学报,2016,(04):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
 YIN Zhi-tong,QIN Qiu-xia,KAN Xin,et al.Genome-wide association analysis of fast chlorophyll fluorescence parameters in maize[J].,2016,(06):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
[3]岳海旺,陈淑萍,彭海成,等.玉米籽粒灌浆特性品种间比较[J].江苏农业学报,2016,(05):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
 YUE Hai-wang,CHEN Shu-ping,PENG Hai-cheng,et al.Grain filling characteristics in maize materials[J].,2016,(06):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
[4]周玲,梁帅强,林峰,等.玉米二态性 InDel 位点的鉴定和分子标记开发[J].江苏农业学报,2016,(06):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
 ZHOU Ling,LIANG Shuai-qiang,LIN Feng,et al.Biallelic InDel loci detection and molecular marker development in maize[J].,2016,(06):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
[5]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
 LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(06):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[6]江彬,毕银丽,申慧慧,等.氮营养与AM真菌协同对玉米生长及土壤肥力的影响[J].江苏农业学报,2017,(02):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
 JIANG Bin,BI Yin-li,SHEN Hui-hui,et al.Synergetic effects of Arbuscular mycorrhizal fungus and nitrogen on maize growth and soil fertility[J].,2017,(06):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
[7]管莉,张阿英.CaM 与 ZmCCaMK 相互作用参与 BR 诱导的玉米叶片抗氧化防护[J].江苏农业学报,2015,(01):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
 GUAN Li,ZHANG A-ying.CaM-ZmCCaMK interaction involved in brassinosteroid-induced antioxidant defense in leaves of maize[J].,2015,(06):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
[8]王元琮,何冰,林峰,等.调控玉米阻止授粉后叶片衰老的QTL定位[J].江苏农业学报,2017,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
 WANG Yuan-cong,HE Bing,LIN Feng,et al.QTL mapping for pollination-prevention on leaf senescence[J].,2017,(06):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
[9]田礼欣,李丽杰,刘旋,等.外源海藻糖对盐胁迫下玉米幼苗根系生长及生理特性的影响[J].江苏农业学报,2017,(04):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
 TIAN Li-xin,LI Li-jie,LIU Xuan,et al.Root growth and physiological characteristics of salt-stressed maize seedlings in response to exogenous trehalose[J].,2017,(06):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
[10]王尔美,李卫国,顾晓鹤,等.基于光谱特征分异的玉米种植面积提取[J].江苏农业学报,2017,(04):822.[doi:doi:10.3969/j.issn.1000-4440.2017.04.015]
 WANG Er-mei,LI Wei-guo,GU Xiao-he,et al.Planting area extraction of maize based on spectral features differentiation[J].,2017,(06):822.[doi:doi:10.3969/j.issn.1000-4440.2017.04.015]

备注/Memo

备注/Memo:
收稿日期:2015-06-07 基金项目:江苏省农业科技自主创新基金项目[CX(14)2009] 作者简介:李国锋(1973-),男,江苏东台人,硕士,副研究员,研究方向为栽培育种。(Tel)025-57686218;(E-mail)ligf@jaas.ac.cn
更新日期/Last Update: 2015-12-31