参考文献/References:
[1]王凤平. 我国食品安全问题研究[J]. 食品工业科技, 2005(10): 161-163.
[2] 陈佳维,吴鹏. 食品安全责任保险制度研究[J]. 食品科学, 2014, 35 (7): 311-316.
[3]周阳,罗岚,唐泰山,等.叠氮溴化丙锭对食品中单增李斯特氏菌检测结果的影响[J].江苏农业学报,2014,30(3):640-644.
[4]冯敏,严建民,李澧,等.辐照和抗氧化剂处理对宠物干粮食品中丙二醛含量的影响[J].江苏农业学报,2013,29(2):410-414.
[5]孙春伟.食品安全风险指数的指标体系探析[J].江苏农业科学,2014,42(3):241-243.
[6]陈学林,黄阳.发展茶食品加工,拓展江苏茶产业发展空间[J].江苏农业科学,2013,41(12):8-10.
[7]林勇,平瑛,李玉峰.我国消费者食品安全认知调查与行为分析[J].江苏农业科学,2013,41(12):299-302.
[8]张艳敏,李志军. 食品安全快速检测技术研究进展[J]. 粮油加工, 2009(8):120-122.
[9]周焕英,高志贤,孙思明,等. 食品安全现场快速检测技术研究进展及应用[J]. 分析测试学报, 2008, 27 (7): 788-794.
[10]王宗花,高艳丽,张菲菲,等. 量子点在分析检测中的应用进展[J]. 分析科学学报, 2012, 28 (1): 119-125.
[11]杨健茂,胡向华,田启威,等. 量子点敏化太阳能电池研究进展[J]. 材料导报, 2011, 25 (23): 163-170.
[12]刘鹏,蒋玉蓉,杨盛谊. 基于量子点的白光二极管的研究进展[J]. 半导体光电, 2013, 34 (2): 1-4.
[13]胡怡,蔡继业. 量子点荧光探针在生物成像中的应用进展[J]. 生理科学进展, 2007, 38 (3): 280-282.
[14]LESNYAK V, GAPONIK N, EYCHMULLER A. Colloidal semiconductor nanocrystals: the aqueous approach[J]. Chem Soc Rev, 2013, 42 (7): 2905-2929.
[15]EKIMOV A I, ONUSHCHENKO A A. Quantum size effect in three-dimensional microscopic semiconductor crystals [J]. JETP Letters, 1981, 34 (6): 345-348.
[16]ROSSETTI R, BRUS L. Electron-hole recombination emission as a probe of surface chemistry in aqueous cadmium sulfide colloids[J]. J Phys Chem, 1982, 86 (23): 4470-4472.
[17]BRUCHEZ M, MORONNE M, GIN P, et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science, 1998, 281 (5385): 2013-2016.
[18]STUCZYNSKI S M, BRENNAN J G, STEIGERWALD M L. Formation of metal-chalcogen bonds by the reaction of metal-alkyls with silyl chalcogenides[J]. Inorg Chem, 1989, 28 (25): 4431-4432.
[19]MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. J Am Chem Soc, 1993, 115 (19): 8706-8715.
[20]PENG Z A, PENG X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor[J]. J Am Chem Soc, 2000, 123 (1): 183-184.
[21]YU W W, QU L, GUO W, et al. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals[J]. Chem Mater, 2003, 15 (14): 2854-2860.
[22]QU L, PENG Z A, PENG X. Alternative routes toward high quality CdSe nanocrystals[J]. Nano Lett, 2001, 1 (6): 333-337.
[23]LI J J, WANG Y A, GUO W, et al. Large-scale synthesis of nearly monodisperse CdSe/CdS Core/Shell nanocrystals using air-stable reagents via successive Ion layer adsorption and reaction[J]. J Am Chem Soc, 2003, 125 (41): 12567-12575.
[24]ROGACH A L, KATSIKAS L, KORNOWSKI A, et al. Synthesis and characterization of thiol-stabilized CdTe nanocrystals[J]. Berichte der Bunsengesellschaft für physikalische Chemie, 1996, 100 (11): 1772-1778.
[25]GAPONIK N, TALAPIN D V, ROGACH A L, et al. Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes[J]. J Phys Chem B, 2002, 106 (29): 7177-7185.
[26]ZHENG Y, YANG Z, YING J Y. Aqueous synthesis of glutathione-capped ZnSe and Zn1–xCdxSe alloyed quantum dots[J]. Adv Mater, 2007, 19 (11): 1475-1479.
[27]LI W, LIU J, SUN K, et al. Highly fluorescent water soluble CdxZn1-xTe alloyed quantum dots prepared in aqueous solution: one-step synthesis and the alloy effect of Zn[J]. J Mater Chem, 2010, 20 (11): 2133-2138.
[28]LUO Z, YUAN X, YU Y, et al. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters[J]. J Am Chem Soc, 2012, 134 (40): 16662-16670.
[29]ZHONG Y, PENG F, BAO F, et al. Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes[J]. J Am Chem Soc, 2013, 135 (22): 8350-8356.
[30]CHAN W C W, NIE S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science, 1998, 281 (5385): 2016.
[31] ZHAO Y, MA Y, LI H, et al. Composite QDs@MIP nanospheres for specific recognition and direct fluorescent quantification of pesticides in aqueous media[J]. Anal Chem, 2011, 84 (1): 386-395.
[32]LI H, QU F. Synthesis of CdTe quantum dots in Sol-gel-derived composite silica spheres coated with calix
[4]arene as luminescent probes for pesticides[J]. Chem Mater, 2007, 19 (17): 4148-4154.
[33]PINWATTANA K, WANG J, LIN C T, et al. CdSe/ZnS quantum dots based electrochemical immunoassay for the detection of phosphorylated bovine serum albumin[J]. Biosens. Bioelectron., 2010, 26 (3): 1109-1113.
[34]LIU X, WANG F, NIAZOV-ELKAN A, et al. Probing biocatalytic transformations with luminescent DNA/Silver nanoclusters[J]. Nano Lett, 2013, 13 (1): 309-314.
[35]ZHENG Z, LI X, DAI Z, et al. Detection of mixed organophosphorus pesticides in real samples using quantum dots/bi-enzyme assembly multilayers[J]. J Mater Chem, 2011, 21 (42): 16955-16962.
[36]GAO X, TANG G, SU X. Optical detection of organophosphorus compounds based on Mn-doped ZnSe d-dot enzymatic catalytic sensor[J]. Biosens Bioelectron, 2012, 36 (1): 75-80.
[37]MENG X, WEI J, REN X, et al. A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2O2-sensitive quantum dots/bi-enzyme[J]. Biosens Bioelectron, 2013, 47 (9): 402-407.
[38]ZHENG Z, ZHOU Y, LI X, et al. Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots[J]. Biosens Bioelectron, 2011, 26 (6): 3081-3085.
[39]LI L, WU G, HONG T, et al. Graphene quantum dots as fluorescence probes for turn-off sensing of melamine in the presence of Hg2+[J]. ACS Appl Mater Interfaces, 2014, 6 (4): 2858-2864.
[40]WANG G L, JIAO H J, ZHU X Y, et al. Enhanced fluorescence sensing of melamine based on thioglycolic acid-capped CdS quantum dots[J]. Talanta, 2012, 93 (6): 398-403.
[41]CHEN N Y, LI H F, GAO Z F, et al. Utilizing polyethyleneimine-capped silver nanoclusters as a new fluorescence probe for Sudan I–IV sensing in ethanol based on fluorescence resonance energy transfer[J]. Sens Actuators B, 2014, 193 (4): 730-736.
[42]CHEN W, PENG C, JIN Z, et al. Ultrasensitive immunoassay of 7-aminoclonazepam in human urine based on CdTe nanoparticle bioconjugations by fabricated microfluidic chip[J]. Biosens Bioelectron, 2009, 24 (7): 2051-2056.
[43]CHEN J, XU F, JIANG H, et al. A novel quantum dot-based fluoroimmunoassay method for detection of Enrofloxacin residue in chicken muscle tissue[J]. Food Chem, 2009, 113 (4): 1197-1201.
[44]张国华,赖卫华,熊勇华,等. 量子点标记免疫层析试纸条快速检测莱克多巴胺的研究[J]. 食品科学, 2009, 30 (12): 254-257.
[45]魏宏,王云云,宋尔群. 基于CdTe量子点测定烟酸诺氟沙星的新方法研究[J]. 化学学报, 2011, 69 (17): 2039-2046.
[46]MOHAMED ALI E, ZHENG Y, YU H H, et al. Ultrasensitive Pb2+ detection by glutathione-capped quantum dots[J]. Anal Chem, 2007, 79 (24): 9452-9458.
[47]LI H, ZHANG Y, WANG X, et al. Calixarene capped quantum dots as luminescent probes for Hg2+ ions[J]. Mater Lett, 2007, 61 (7): 1474-1477.
[48]GUO Y, WANG Z, SHAO H, et al. Stable fluorescent gold nanoparticles for detection of Cu2+ with good sensitivity and selectivity[J]. Analyst, 2012, 137 (2): 301-304.
[49]FREEMAN R, FINDER T, WILLNER I. Multiplexed analysis of Hg2+ and Ag+ Ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations[J]. Angew Chem Int Ed, 2009, 48 (42): 7818-7821.
[50]GOLDMAN E R, CLAPP A R, ANDERSON G P, et al. Multiplexed toxin analysis using four colors of quantum dot fluororeagents[J]. Anal Chem, 2004, 76 (3): 684-688.
[51]YANG L, LI Y. Simultaneous detection of escherichia coli O157:H7 and salmonella typhimurium using quantum dots as fluorescence labels[J]. Analyst, 2006, 131 (3): 394-401.
[52]SU X L, LI Y. Quantum dot biolabeling coupled with immunomagnetic separation for detection of escherichia coli O157∶H7[J]. Anal Chem, 2004, 76 (16): 4806-4810.
[53]CHEN L, ZHANG X, ZHOU G, et al. Simultaneous determination of human enterovirus 71 and coxsackievirus B3 by dual-color quantum dots and homogeneous immunoassay[J]. Anal Chem, 2012, 84 (7): 3200-3207.
相似文献/References:
[1]王永娟,左伟勇,朱善元,等.鸭呼肠孤病毒的RT-PCR检测方法的建立[J].江苏农业学报,2016,(05):1107.[doi:10.3969/j.issn.1000-4440.2016.05.024]
WANG Yong-juan,ZUO Wei-yong,ZHU Shan-yuan,et al.Establishment of a RT-PCR method for duck reovirus detection[J].,2016,(01):1107.[doi:10.3969/j.issn.1000-4440.2016.05.024]
[2]王为,叶泗洪,潘宗瑾,等.棉花分子标记冗余性检测与评价的方法[J].江苏农业学报,2015,(02):247.[doi:10.3969/j.issn.1000-4440.2015.02.004]
WANG Wei,YE Si-hong,PAN Zong-jin,et al.An approach to detecting and evaluating molecular marker redundancy in cotton[J].,2015,(01):247.[doi:10.3969/j.issn.1000-4440.2015.02.004]
[3]王恒波,余泽怀,肖乃衍,等.转基因番木瓜检测方法的建立[J].江苏农业学报,2018,(05):1198.[doi:doi:10.3969/j.issn.1000-4440.2018.05.032]
WANG Heng-bo,YU Ze-huai,XIAO Nai-yan,et al.Establishment of detection method for transgenic papaya[J].,2018,(01):1198.[doi:doi:10.3969/j.issn.1000-4440.2018.05.032]
[4]姜子义,李碧,蔡瑶,等.猪伪狂犬病毒野毒株与疫苗株的多重PCR鉴别[J].江苏农业学报,2018,(06):1307.[doi:doi:10.3969/j.issn.1000-4440.2018.06.015]
JIANG Zi-yi,LI Bi,CAI Yao,et al.Multiplex PCR identification of pseudorabies vaccine strains and wild viruses[J].,2018,(01):1307.[doi:doi:10.3969/j.issn.1000-4440.2018.06.015]
[5]郭佳琪,杨晓宇,冯宇,等.猪非典型性瘟病毒RT-PCR检测方法的建立及初步应用[J].江苏农业学报,2019,(02):357.[doi:doi:10.3969/j.issn.1000-4440.2019.02.016]
GUO Jia-qi,YANG Xiao-yu,FENG Yu,et al.Establishment and preliminary application of RT-PCR detection method for atypical porcine pestivirus[J].,2019,(01):357.[doi:doi:10.3969/j.issn.1000-4440.2019.02.016]
[6]江地科,尹清清,项明源,等.检测猪瘟病毒胶体金和量子点试纸条的初步研制[J].江苏农业学报,2020,(01):116.[doi:doi:10.3969/j.issn.1000-4440.2020.01.016]
JIANG Di-ke,YIN Qing-qing,XIANG Ming-yuan,et al.Development of colloidal gold and quantum dot test strip for detection of classical swine fever virus[J].,2020,(01):116.[doi:doi:10.3969/j.issn.1000-4440.2020.01.016]
[7]白彩霞,张达,赵靓,等.鹅星状病毒SYBR Green I荧光定量RT-PCR方法的建立[J].江苏农业学报,2020,(03):634.[doi:doi:10.3969/j.issn.1000-4440.2020.03.015]
BAI Cai-xia,ZHANG Da,ZHAO Liang,et al.Development and application of SYBR Green I fluorescence quantitative RT-PCR assay for detection of goose astrovirus[J].,2020,(01):634.[doi:doi:10.3969/j.issn.1000-4440.2020.03.015]
[8]王云富,崔彩芳,孙兆岳,等.花旗松素的提取、检测及功能研究进展[J].江苏农业学报,2024,(02):376.[doi:doi:10.3969/j.issn.1000-4440.2024.02.020]
WANG Yun-fu,CUI Cai-fang,SUN Zhao-yue,et al.Research progress on extraction, detection and function of taxifolin[J].,2024,(01):376.[doi:doi:10.3969/j.issn.1000-4440.2024.02.020]