[1]姜楠,韩博文,林春晶,等.作物杂种优势相关基因挖掘及QTL定位研究进展[J].江苏农业学报,2023,(08):1762-1771.[doi:doi:10.3969/j.issn.1000-4440.2023.08.017]
 JIANG Nan,HAN Bo-wen,LIN Chun-jing,et al.Research progress on the mining of heterosis-related genes and QTL mapping in crops[J].,2023,(08):1762-1771.[doi:doi:10.3969/j.issn.1000-4440.2023.08.017]
点击复制

作物杂种优势相关基因挖掘及QTL定位研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年08期
页码:
1762-1771
栏目:
综述
出版日期:
2023-12-31

文章信息/Info

Title:
Research progress on the mining of heterosis-related genes and QTL mapping in crops
作者:
姜楠12韩博文12林春晶2吴松权1张春宝12
(1.延边大学农学院,吉林 延吉133002;2.农业农村部杂交大豆育种重点实验室/吉林省农业科学院大豆研究所,吉林长春130033)
Author(s):
JIANG Nan12HAN Bo-wen12LIN Chun-jing2WU Song-quan1ZHANG Chun-bao12
(1.College of Agriculture, Yanbian University, Yanji 133002, China;2.Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs/Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China)
关键词:
作物杂种优势基因克隆QTL定位
Keywords:
cropheterosisgene cloningquantitative trait locus (QTL) mapping
分类号:
S334.5
DOI:
doi:10.3969/j.issn.1000-4440.2023.08.017
文献标志码:
A
摘要:
杂种优势利用是提升作物产量、抗逆性和品质的重要手段之一,目前杂种优势已被广泛应用于杂交育种研究中。随着分子生物学、基因工程、高通量测序技术等的高速发展,研究人员在不同层面不断探索作物杂种优势的遗传基础,杂种优势数量性状基因座(Quantitative trait locus, QTL)定位与相关基因挖掘研究是其中的重要方面,对解析杂种优势分子机理具有重要的理论意义。本文对玉米、水稻、大豆等主要农作物中已定位的株型、粒质量及产量等杂种优势相关QTL或克隆基因的类型、功能及分子机理进行阐述和总结,以期通过结合现代分子生物学技术与高通量组学数据分析技术,深度解析作物杂种优势遗传基础,为推动杂种优势高效利用提供参考。
Abstract:
Heterosis utilization is an effective method for increasing crop yield, improving resistance and quality. At present, heterosis has been widely applied in hybrid breeding. With the rapid development of molecular biology, gene engineering and high-throughput sequencing technology, researchers have been exploring the genetic basis of crop heterosis from different dimensions. Among those, quantitative trait locus (QTL) mapping and heterosis-related genes discovering are the most important aspects of heterosis, which are helpful for understanding the molecular mechanism of heterosis. Therefore, this paper described and summarized the types, functions and molecular mechanisms of QTLs or cloned genes related to heterosis, such as plant type, grain weight and yield, which had been located in corn, rice, soybean and other major crops, aiming to provide a reference for in-depth analysis of the genetic basis of crop heterosis and promote the efficient utilization of heterosis through the combination of modern molecular biological technology and high-throughput omics data analysis.

参考文献/References:

[1]卢庆善,孙毅,华泽田. 农作物杂种优势[M]. 北京:中国农业科学技术出版社,2001.
[2]SCHNABLE P S, SPRINGER N M. Progress toward understanding heterosis in crop plants[J]. Annual Review of Plant Biology,2013,64:71-88.
[3]聂虎帅. 玉米杂种优势相关基因的克隆与功能分析[D]. 长春:吉林大学,2015.
[4]SHULL G H. The composition of a field of maize[J]. Journal of Heredity,1908,4(1):296-301.
[5]KUTKA F J, SMITH M E. How many parents give the highest yield in predicted synthetic and composite populations of maize?[J]. Crop Science,2007,47(5):1905-1913.
[6]CROW J F. Ninety years ago: the beginning of hybrid maize[J]. Genetics,1998,148:923-928.
[7]CHENG S H, ZHUANG J Y, FAN Y Y, et al. Progress in research and development on hybrid rice: a super-domesticate in China[J]. Annals of Botany,2007,100(5):959-966.
[8]GIRKE A, SCHIERHOLT A, BECKER H C. Extending the rapeseed gene pool with resynthesized Brassica napus II: heterosis[J]. Theoretical and Applied Genetics,2012,124(6):1017-1026.
[9]DONG J, WU F B, JIN Z Q, et al. Heterosis for yield and some physiological traits in hybrid cotton Cikangza 1[J]. Euphytica,2006,151:71-77.
[10]孙妍妍,赵丽梅,张伟,等. 大豆杂种优势利用研究进展[J]. 大豆科技,2021(6):26-35.
[11]BRUCE A H. The mendelian theory of heredity and the augmentation of vigor[J]. Science,1910. DOI:10.1126/science.32.827.627.b.
[12]CROW J F. Alternative hypotheses of hybrid vigor[J]. Genetics,1948,33:477-487.
[13]DAVENPORT C B. Degeneration albinism and inbreeding[J]. Science,1908. DOI:10.1126/science.28.718.454.c.
[14]JONES D F. Dominance of linked factors as ameans of acounting for heterosis[J]. Genetics,1917,2:466-479.
[15]XIAO J, LI J, YUAN L, et al. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers[J]. Genetics,1995,140(2):745-754.
[16]LI L Z, LU K Y, CHEN Z M, et al. Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids[J]. Genetics,2008,180(3):1725-1742.
[17]BIRCHLER J A, AUGER D L, RIDDLE N C. In search of the molecular basis of heterosis[J]. The Plant Cell,2003,15(10):2236-2239.
[18]KRIEGER U, LIPPMAN Z B, ZAMIR D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato[J]. Nature Genetics,2010,42(5):459-463.
[19]HUANG X H, YANG S H, GONG J Y, et al. Genomic architecture of heterosis for yield traits in rice[J]. Nature,2016,537:629-633.
[20]MINVIELLE F. Dominance is not necessary for heterosis: a two-locus model[J]. Genetics Research,1987,49(3):245-247.
[21]SCHNELL F W, COCKERHAM C C. Multiplicative vs. arbitrary gene action in heterosis[J]. Genetics,1992,131:461-469.
[22]YU S B, LI J X, XU C G, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid[J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94(17):9226-9231.
[23]WOLF D P, HALLAUER A R. Triple testcross analysis to detect epistasis in maize[J]. Crop Science,1997,37(3):763-770.
[24]TAGUCHI-SHIOBARA F, YUAN Z, HAKE S, et al. The fasciated ear 2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize[J]. Genes and Development,2001,15(20):2755-2766.
[25]BOMMERT P, NAGASAWA N S, JACKSON D. Quantitative variation in maize kernel row number is controlled by the fasciated ear 2 locus[J]. Nature Genetics,2013,45(3):334-337.
[26]潘振远. 两个玉米产量性状基因ZmSMK9和ZmSRL5的克隆及功能分析[D]. 武汉:华中农业大学, 2020.
[27]曹晓良,翟立红,刘瑞响,等. 玉米八个产量相关性状的QTL鉴定[J]. 河北农业大学学报,2012,35(5):1-8.
[28]JIANG L, GE M, ZHAO H, et al. Analysis of heterosis and quantitative trait loci for kernel shape related traits using triple testcross population in maize[J]. PLoS One,2015,10(4):e0124779.
[29]彭倩,薛亚东,张向歌,等. 利用单片段代换系测交群体定位玉米产量相关性状的杂种优势位点[J]. 作物学报,2016,42(4):482-491.
[30]ZHOU Q, DONG Y B, SHI Q L, et al. Verification and fine mapping of qGW1.05, a major QTL for grain weight in maize (Zea mays L.)[J]. Molecular Genetics and Genomics,2017,292(4):871-881.
[31]CHUCK G S, BROWN P J, MEELEY R, et al. Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(52):18775-18780.
[32]LIU H J, WANG Q, CHEN M J, et al. Genome-wide identification and analysis of heterotic loci in three maize hybrids[J]. Plant Biotechnology Journal,2020,18(1):185-194.
[33]SHI X, ZHANG X H, SHI D K, et al. Dissecting heterosis during the ear inflorescence development stage in maize via a metabolomics-based analysis[J]. Scientific Reports,2019,9(1). DOI:10.1038/s41598-018-36446-5.
[34]LI C H, GUAN H H, JING X, et al. Genomic insights into historical improvement of heterotic groups during modern hybrid maize breeding[J]. Nature Plants,2022,8(7):750-763.
[35]GONG D, WANG Y, ZHANG H, et al. Overexpression of ZmKL9 increases maize hybrid hundred kernel weight[J]. Plant Biotechnology Journal,2022,21(3):451-453.
[36]WANG Q, FAN J, CONG J, et al. Natural variation of ZmLNG1 alters organ shapes in maize[J]. New Phytologist,2022,237(2):471-482.
[37]SONG X J, HUANG W, SHI M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics,2007,39(5):623-630.
[38]HE G M, LUO X J, TIAN F, et al. Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice[J]. Genome Research,2006,16(5):618-626.
[39]SHOMURA A, IZAWA T, EBANA K, et al. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nature Genetics,2008,40(8):1023-1028.
[40]HUANG X Z, QIAN Q, LIU Z B, et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nature Genetics,2009,41(4):494-497.
[41]WANG J Y, NAKAZAKI T, CHEN S Q, et al. Identification and characterization of the erect-pose panicle gene EP conferring high grain yield in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics,2009,119(1):85-91.
[42]ZHA X J, LUO X J, QIAN X Y, et al. Over-expression of the rice LRK1 gene improves quantitative yield components[J]. Plant Biotechnology Journal,2009,7(7):611-620.
[43]JIAO Y Q, WANG Y H, XUE D W, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics,2010,42(6):541-544.
[44]WANG J, ZHOU L, SHI H, et al. A single transcription factor promotes both yield and immunity in rice[J]. Science,2018. DOI:10.1126/science.aat7675.
[45]OOKAWA T, HOBO T, YANO M, et al. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield[J]. Nature Communications,2010.DOI:10.1038/ncomms1132.
[46]YAN W H, WANG P, CHEN H X, et al. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice[J]. Molecular Plant,2011,4(2):319-330.
[47]QIAO Y L, PIAO R H, SHI J X, et al. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics,2011,122(7):1439-1449.
[48]翁小煜. 水稻多效性基因Ghd7的克隆和功能分析[D]. 武汉:华中农业大学,2014.
[49]LI D Y, HUANG Z Y, SONG S H, et al. Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(41):E6026-E6035.
[50]WANG Q, NIAN J, XIE X, et al. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice[J]. Nature Communications,2018.DOI:10.1038/s41467-017-02781-w.
[51]WANG C S, TANG S C, ZHAN Q L, et al. Dissecting a heterotic gene through GradedPool-Seq mapping informs a rice-improvement strategy[J]. Nature Communications,2019. DOI:10.1038/s41467-019-11017-y.
[52]欧阳亦聃. 水稻广亲和基因S5-n和光敏核不育基因pms3功能分析及作用机理研究以及水稻Hsp20基因家族分析[D]. 武汉:华中农业大学,2008.
[53]LI Y B, FAN C C, XING Y Z, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics,2011,43(12):1266-1269.
[54]ZHU Y J, HUANG D R, FAN Y Y, et al. Detection of QTLs for yield heterosis in rice using a RIL population and its testcross population[J]. International Journal of Genomics,2016. DOI: 10.1155/2016/2587823.
[55]HUO X, WU S, ZHU Z F, et al. NOG1 increases grain production in rice[J]. Nature Communications,2017. DOI:10.1038/s41467-017-01501-8.
[56]ZHANG C B, LIN C J, FU F Y, et al. Comparative transcriptome analysis of flower heterosis in two soybean F1 hybrids by RNA-seq[J]. PLoS One,2017,12(7):e0181061.
[57]WANG S D, LIU S L, WANG J, et al. Simultaneous changes in seed size, oil content, and protein content driven by selection of SWEET homologues during soybean domestication[J]. National Science Review,2020. DOI:10.1093/nsr/nwaa110/5847698.
[58]DUAN Z B, ZHANG M, ZHANG Z F, et al. Natural allelic variation of GmST05 controlling seed size and quality in soybean[J]. Plant Biotechnology Journal,2022,20(9):1807-1818.
[59]SINGH A K, FU D Q, EL-HABBAK M, et al. Silencing genes encoding ω-3 fatty acid desaturase alters seed size and accumulation of bean pod mottle virus in soybean[J]. Molecular Plant-Microbe Interactions,2011,24(4):506-515.
[60]NGUYEN C X, PADDOCK K J, ZHANG Z Y, et al. GmKIX8-1 regulates organ size in soybean and is the causative gene for the major seed weight QTL qSw17-1[J]. New Phytologist,2021,229(2):920-934.
[61]ZHU W W, YANG C, YONG B, et al. An enhancing effect attributed to a nonsynonymous mutation in SOYBEAN SEED SIZE 1, a SPINDLY-like gene, is exploited in soybean domestication and improvement[J]. New Phytologist,2022,236(4):1375-1392.
[62]LU X, XIONG Q, CHENG T, et al. A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight[J]. Molecular Plant,2017,10(5):670-684.
[63]LIANG Q, CHEN L, YANG X, et al. Natural variation of Dt2 determines branching in soybean[J]. Nature Communications,2022. DOI:10.1038/s41467-022-34153-4.
[64]GAO J, YANG S, CHENG W, et al. GmILPA1, encoding an APC8-like protein, controls leaf petiole angle in soybean[J]. Plant Physiology,2017,174 (2): 1167-1176.
[65]ZHOU H, LIU S H, LIU Y J, et al. Mapping and validation of major quantitative trait loci for kernel length in wild barley (Hordeum vulgare ssp. spontaneum)[J]. BMC Genetics,2016. DOI:10.1186/s12863-016-0438-6.
[66]王洋坤. 陆地棉高强纤维QTL(qFSD03)的精细定位与候选基因的克隆[D]. 南京:南京农业大学,2016.
[67]KOHEL R J, YU J, PARK Y H, et al. Molecular mapping and characterization of traits controlling fiber quality in cotton[J]. Euphytica,2001,121(2):163-172.
[68]MA L L, IJAZ B, WANG Y M, et al. Dynamic QTL analysis and validation for plant height using maternal and paternal backcrossing populations in upland cotton[J]. Euphytica,2018,214(9):167-184.
[69]LAN T H, PATERSON A H. Comparative mapping of QTLs determining the plant size of Brassica oleracea[J]. Theoretical and Applied Genetics,2001,103(2):383-397.
[70]李幸. 甘蓝产量相关性状的遗传解析和QTL定位[D]. 北京:中国农业科学院,2019.
[71]FRARY A, FULTON T M, ZAMIR D, et al. Advanced backcross QTL analysis of a Lycopersicon esculentum × L. pennellii cross and identification of possible orthologs in the Solanaceae[J]. Theoretical and Applied Genetics,2004,108(3):485-496.
[72]RAO P G, BEHERA T K, GAIKWAD A B, et al. Genetic analysis and QTL mapping of yield and fruit traits in bitter gourd (Momordica charantia L.)[J]. Scientific Reports,2021. DOI:10.1038/s41598-021-83548-8.
[73]何旭东,隋德宗,王红玲,等. 中国柳树遗传育种研究进展[J]. 南京林业大学学报(自然科学版),2022,46(6):51-63.
[74]杨美丽,鹿红卫,程建梅,等. 玉米杂交种产量性状杂种优势及其与亲本自交系的相关研究[J]. 江苏农业科学,2022,50(4):63-68.
[75]韦金菊,周会,李海碧,等. 广西近40年甘蔗种质资源引进及利用[J]. 南方农业学报,2021,52(2):280-287.
[76]肖熙鸥,林文秋,陈卓,等. 马铃薯抗青枯病育种研究进展[J]. 江苏农业学报,2021,37(5):1344-1351.
[77]吕玉茹,李造哲,马青枝,等. 披碱草和野大麦及其杂交新品系苗期抗旱性[J]. 江苏农业科学,2021,49(7):160-164.
[78]MA X, XING F, JIA Q, et al. Parental variation in CHG methylation is associated with allelic-specific expression in elite hybrid rice[J]. Plant Physiology,2021,186(2):1025-1041.
[79]CHEN L Y, ZHU Y Y, REN X B, et al. Heterosis and differential DNA methylation in soybean hybrids and their parental lines[J]. Plants,2022. DOI:10.3390/plants11091136.
[80]KONG X P, CHEN L, WEI T Z, et al. Transcriptome analysis of biological pathways associated with heterosis in Chinese cabbage[J]. Genomics,2020,112(6):4732-4741.
[81]DAN Z W, CHEN Y P, LI H, et al. The metabolomic landscape of rice heterosis highlights pathway biomarkers for predicting complex phenotypes[J]. Plant Physiology,2021,187(2):1011-1025.
[82]LI Z, ZHU A, SONG Q, et al. Temporal regulation of the metabolome and proteome in photosynthetic and photorespiratory pathways contributes to maize heterosis[J]. The Plant Cell,2020. DOI:10.1105/tpc.20.00320.
[83]BIRDSEYE D, DE BOER L A, BAI H, et al. Plant height heterosis is quantitatively associated with expression levels of plastid ribosomal proteins[J]. Proceedings of the National Academy of Sciences of the United States of America,2021. DOI:10.1101/2021.02.16.431485.

相似文献/References:

[1]周玲,张体付,梁帅强,等.利用三重测交群体解析玉米穗部性状杂种优势遗传学基础[J].江苏农业学报,2017,(05):986.[doi:doi:10.3969/j.issn.1000-4440.2017.05.005]
 ZHOU Ling,ZHANG Ti-fu,LIANG Shuai-qiang,et al.Deciphering the genetic basis of heterosis for ear traits using the triple testcross population in maize[J].,2017,(08):986.[doi:doi:10.3969/j.issn.1000-4440.2017.05.005]
[2]金兰,赵丽萍,王银磊,等.番茄的配合力和杂种优势群的划分[J].江苏农业学报,2019,(03):667.[doi:doi:10.3969/j.issn.1000-4440.2019.03.023]
 JIN Lan,ZHAO Li-ping,WANG Yin-lei,et al.Combining ability and division of heterotic group in tomato[J].,2019,(08):667.[doi:doi:10.3969/j.issn.1000-4440.2019.03.023]
[3]徐文龙,张志杨,庄林林,等.无机纳米酶在增强作物抗非生物胁迫中的应用研究进展[J].江苏农业学报,2023,(09):1945.[doi:doi:10.3969/j.issn.1000-4440.2023.09.017]
 XU Wen-long,ZHANG Zhi-yang,ZHUANG Lin-lin,et al.Research progress on the application of inorganic nanozymes in enhancing crop resistance to abiotic stress[J].,2023,(08):1945.[doi:doi:10.3969/j.issn.1000-4440.2023.09.017]

备注/Memo

备注/Memo:
收稿日期:2022-12-21基金项目:国家自然科学基金项目(U21A20215);国家现代农业产业技术体系建设专项(CARS-04);吉林省农业科技创新工程项目(CXGC2021RCY032)作者简介:姜楠(1998-),女,辽宁庄河人,硕士研究生,主要从事大豆杂种优势利用研究。(E-mail)1225180279@qq.com通讯作者:张春宝,(E-mail)cbzhang@cjaas.com;吴松权,(E-mail)arswsq@ybu.edu.cn
更新日期/Last Update: 2024-01-15