[1]程瑞,汪国莲,孙玉东,等.萝卜HAK/KUP/KT基因家族鉴定与表达特性分析[J].江苏农业学报,2023,(03):777-787.[doi:doi:10.3969/j.issn.1000-4440.2023.03.019]
 CHENG Rui,WANG Guo-lian,SUN Yu-dong,et al.Identification and expression characteristics analysis of HAK/KUP/KT gene family in radish[J].,2023,(03):777-787.[doi:doi:10.3969/j.issn.1000-4440.2023.03.019]
点击复制

萝卜HAK/KUP/KT基因家族鉴定与表达特性分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年03期
页码:
777-787
栏目:
园艺
出版日期:
2023-06-30

文章信息/Info

Title:
Identification and expression characteristics analysis of HAK/KUP/KT gene family in radish
作者:
程瑞12汪国莲12孙玉东12王林闯12罗德旭12王玮12仲秀娟12赵建锋12
(1.江苏徐淮地区淮阴农业科学研究所/淮安市设施蔬菜重点实验室,江苏淮安223001;2.淮阴师范学院/江苏省环洪泽湖生态农业生物技术重点实验室,江苏淮安223001)
Author(s):
CHENG Rui12WANG Guo-lian12SUN Yu-dong12WANG Lin-chuang12LUO De-xu12WANG Wei12ZHONG Xiu-juan12ZHAO Jian-feng12
(1.Huaiyin Institute of Agricultural Sciences in Xuhuai Region of Jiangsu/Huaian Key Laboratory for Facility Vegetables, Huaian 223001, China;2.Huaiyin Normal University/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaian 223001, China)
关键词:
萝卜钾转运蛋白基因家族K+表达分析
Keywords:
radishpotassium transport proteingene familyK+expression analysis
分类号:
S631.1
DOI:
doi:10.3969/j.issn.1000-4440.2023.03.019
文献标志码:
A
摘要:
钾元素是植物生长发育过程中必需的主要矿质营养元素之一,对作物的产量和品质有决定性影响,细胞内K+含量水平在很大程度上受K+转运蛋白控制。通过生物信息学方法从全基因组水平鉴定出萝卜K+转运蛋白HAK/KUP/KT基因家族成员,并对其基因结构、蛋白质特性、保守基序、染色体定位、启动子顺式作用元件、系统进化及表达特性等进行分析。结果表明,鉴定出的17个萝卜HAK/KUP/KT基因不均等地分布在萝卜6条染色体及Scaffold00840上,根据与拟南芥的同源关系将其命名为RsHAK1~RsHAK17;RsHAKs基因结构、保守基序、蛋白质理化特性等均具有高度保守性,启动子区域存在大量与环境因素、植物激素、逆境胁迫应答等有关的顺式作用元件;系统进化分析结果显示,17个RsHAKs基因聚为4个亚家族,全基因组复制事件是RsHAKs基因扩张的主要驱动力。转录组和qRT-PCR表达分析结果表明,除RsHAK5仅在萝卜根部表达外,其他RsHAKs在萝卜各器官及发育过程中均有特异性表达,且在高钾渗透胁迫下在叶片中相对表达量显著上调,RsHAK3、RsHAK9、RsHAK11和RsHAK12在根部呈现明显的缺钾诱导表达模式。研究结果为进一步全面解析HAK/KUP/KT基因在萝卜中的生物学功能以及提高萝卜栽培品质提供了一定理论依据。
Abstract:
Potassium is one of the essential main mineral nutrient elements in the process of plant growth and development, and has a decisive impact on the yield and quality of crops. The level of intracellular K+ content is largely controlled by K+ transport proteins. Members of the radish K+ transport protein related HAK/KUP/KT gene family were identified from whole genome-wide level by bioinformatics methods, and the gene structure, protein properties, conserved motifs, chromosomal localization, promoter cis-acting elements, phylogenetic evolution and expression characteristics were analyzed. The results showed that the 17 radish HAK/KUP/KT genes were unequally distributed on six chromosomes and Scaffold00840, and were named RsHAK1-RsHAK17 according to their homology with Arabidopsis. The gene structure, conserved motifs, physicochemical properties of proteins of RsHAKs genes were highly conserved, and there were a large number of cis-acting elements related to environmental factors, plant hormones and responses to adversity stresses in the promoter region. Phylogenetic analysis showed that 17 RsHAKs genes clustered into four subfamilies, and whole genome-wide replication events were the main driver of the RsHAKs genes expansion. The results of transcriptome and qRT-PCR expression analysis showed that except for RsHAK5, which was only expressed in radish roots, other RsHAKs were specifically expressed in different organs and different development processes of radish, and the relative expression in leaves was significantly up-regulated under high potassium osmotic stress. RsHAK3, RsHAK9, RsHAK11 and RsHAK12 showed obvious expression patterns induced by potassium deficiency in roots. Overall, the results provide theoretical basis for further comprehensive analysis of the biological functions of HAK/KUP/KT gene and improving the cultivation quality of radish.

参考文献/References:

[1]ASHLEY M K, GRANT M, GRABOV A. Plant responses to potassium deficiencies: a role for potassium transport proteins[J]. J Exp Bot, 2006, 57(2): 425-436.
[2]MAATHUIS F J, SANDERS D. Plasma membrane transport in context — making sense out of complexity[J]. Curr Opin Plant Biol, 1999, 2(3):236-243.
[3]MAATHUIS F J, SANDERS D. Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana[J]. PNAS,1994, 91(20): 9272-9276.
[4]MAATHUIS F J, SANDERS D. Regulation of K+ absorption in plant root cells by external K+: interplay of different plasma membrane K+ transporters[J]. J Exp Bot,1997, 48:451-458.
[5]LI W H, XU G H, ALLI A, et al. Plant KT/HAK/KUP K+ transporters: function and regulation[J]. Seminars in Cell and Developmental Biology, 2018, 74:133-141.
[6]SANTA-MARIA G E, RUBIO F, DUBCOVSKY J, et al. The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter[J]. Plant Cell, 1997, 9(12): 2281-2289.
[7]GUPTA M, QIU X, WANG L, et al. KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa) [J]. Molecular Genetics and Genomics, 2008, 280(5): 437-452.
[8]吴胜男, 杨 媛, 李英壮, 等. 小麦KUP/HAK/KT基因家族的全基因组鉴定、系统进化和表达模式分析[J]. 西北农业学报, 2021, 30(3): 351-364.
[9]ZHANG Z, ZHANG J, CHEN Y, et al. Genome-wide analysis and identification of HAK potassium transporter gene family in maize (Zea mays L.) [J]. Molecular Biology Reports, 2012, 39(8): 8465-8473.
[10]晁毛妮,温青玉,张晋玉,等. 大豆KUP/HAK/KT钾转运体基因家族的鉴定与表达分析[J]. 西北植物学报, 2017, 37(2): 239-249.
[11]许赛赛,张博,仲阳,等. 马铃薯HAK/KUP/KT基因家族鉴定与表达分析[J].分子植物育种, 2021, 19(12): 3878-3886.
[12]朱乐,赵鑫泽,蒋立希. 甘蓝型油菜钾离子转运载体HAK/KUP/KT家族的全基因组鉴定与分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 303-313.
[13]OU W, MAO X, HUANG C, et al. Genome-wide identification and expression analysis of the KUP family under abiotic stress in Cassava (Manihot esculenta Crantz) [J]. Front Physiol, 2018, 9: 17.
[14]HYUN T K, RIM Y, KIM E, et al. Genome-wide and molecular evolution analyses of the KT/HAK/KUP family in tomato (Solanum lycopersicum L.) [J]. Genes & Genomics, 2014, 36(3): 365-374.
[15]MARTINEZ-CORDERO M A, MARTINEZ V, RUBIO F. Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper[J]. Plant Mol Biol, 2004, 56(3): 413-421.
[16]WANG Y Z, LV J H, CHEN D, et al. Genome-wide identification, evolution, and expression analysis of the KT/HAK/KUP family in pear[J]. Genome, 2018, 61(10): 755-765.
[17]赵建荣,杨圆,秦改花,等. 石榴HAK/KUP/KT家族基因鉴定及钾转运功能分析[J].园艺学报, 2022, 49(4): 758-768.
[18]金龙飞,张安妮,滕梦鑫,等. 香蕉钾转运体HAK/KUP/KT家族鉴定及其在果实发育和低钾胁迫下的表达分析[J].江苏农业科学, 2022, 50(2): 30-36.
[19]RUBIO F, GUILLERMO E S, ALONSO R N. Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells[J]. Physiologia Plantarum, 2010, 109(1): 34-43.
[20]GOMEZ-PORRAS J L, RIAO-PACHóN D M, BENITO B, et al. Phylogenetic analysis of K+ transporters in bryophytes, lycophytes, and flowering plants indicates a specialization of vascular plants[J]. Frontiers in Plant Science, 2012, 3:167.
[21]柴薇薇,王文颖,崔彦农,等. 植物钾转运蛋白KUP/HAK/KT家族研究进展[J]. 植物生理学报, 2019, 55(12):1747-1761.
[22]GIERTH M, SCHROEDER P M I. The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel con to K+ uptake kontributiinetics in Arabidopsis roots[J]. Plant Physiology, 2005, 137(3):1105-1114.
[23]QI Z, HAMPTON C R, RYOUNG S, et al. The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis[J]. Journal of Experimental Botany, 2008, 59(3): 595-607.
[24]RIGAS S, DITENGOU F A, LJUNG K, et al. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex[J]. New Phytologist, 2012, 197(4): 1130-1141.
[25]孙小川,段伟科,黄志楠,等. 萝卜DHN基因家族的鉴定及表达模式分析[J/OL].分子植物育种,2022:1-8
[2022-08-05]. https://kns.cnki.net/kcms/detail/46.1068.S.20210922.1446.005.html.
[26]KITASHIBA H, LI F, HIRAKAWA H, et al. Draft sequences of the radish (Raphanus sativus L.) genome[J]. DNA Res, 2014, 21(5): 481-490.
[27]MITSUI Y, SHIMOMURA M, KOMATSU K, et al. The radish genome and comprehensive gene expression profile of tuberous root formation and development[J]. Sci Rep, 2015, 5(1):1-14.
[28]JEONG Y M, KIM N, AHN B O, et al. Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes[J]. Theor Appl Genet, 2016, 129(7):1357-1372.
[29]BAILEY T L, WILLIAMS N, MISLEH C, et al. MEME: discovering and analyzing DNA and protein sequence motifs[J]. Nucleic Acids Res, 2006, 34:369-373.
[30]CHEN C, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8):1194-1202.
[31]HU B, JIN J P, GUO A Y, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297.
[32]HIGO K, UGAWA Y, IWAMOTO M, et al. Plant cis-acting regulatory DNA elements (PLACE) database[J]. Nucleic Acids Res, 1999, 27(1): 297-300.
[33]WANG Y P, TANG H B, DEBARRY J D, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Res, 2012, 40(7): e49.
[34]QIAO X, LI M, LI L T, et al. Genome-wide identification and comparative analysis of the heat shock transcription factor family in Chinese white pear (Pyrus bretschneideri) and five other Rosaceae species[J]. BMC Plant Biol, 2015, 15:12.
[35]NEI M, GOJOBORI T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions[J]. Mol Biol Evol, 1986, 3(5): 418-426.
[36]SHUANG H, CHEN L S, JIANG H X, et al. Boron deficiency growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedling[J]. Journal of Plant Physiology, 2008, 165(13):1331-1341.
[37]SONG Z Z, MA R J, YU M L. Genome-wide analysis and identification of KT/HAK/KUP potassium transporter gene family in peach (Prunus persica) [J]. Genet Mol Res, 2015, 14(1): 774-787.
[38]NIEVES-CORDONES M, RODENAS R, CHAVANIEU A, et al. Uneven HAK/KUP/KT protein diversity among angiosperms: species distribution and perspectives[J]. Front Plant Sci, 2016, 7:126.
[39]ELUMALAI R P, NAGPAL P, REED J W. A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion[J]. Plant Cell, 2002, 14:119-131.
[40]RIGAS S, DEBROSSES G, HARALAMPIDIS K, et al. TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs[J]. Plant Cell, 2001, 13:139-151.
[41]MAATHUIS F J. The role of monovalent cation transporters in plant responses to salinity[J]. J Exp Bot, 2006, 57:1137-1147.
[42]WESTERMANN D T. Soil nutrient bioavailability: a mechanistic approach[J]. Soil Sci, 1996, 161(2): 140-141.
[43]王瑜,刘扬,卓座品,等. 高氮低磷中钾配比对武夷岩茶产量及品质的影响[J].南方农业学报,2022,53(2):391-400.
[44]OSAKABE Y, ARINAGA N, UMEZAWA T, et al. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis[J]. Plant Cell, 2013, 25(2): 609-624.
[45]KIM E J, KWAK J M, UOZUMI N, et al. AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity[J]. Plant Cell, 1998, 10(1):51-62.

相似文献/References:

[1]许园园,刘哲,娄丽娜,等.基于 MCID 法的萝卜品种快速鉴定[J].江苏农业学报,2016,(06):1384.[doi:doi:10.3969/j.issn.1000-4440.2016.06.029]
 XU Yuan-yuan,LIU Zhe,LOU Li-na,et al.Rapid identification of radish varieties based on MCID method[J].,2016,(03):1384.[doi:doi:10.3969/j.issn.1000-4440.2016.06.029]
[2]李芳,徐良,魏美甜,等.萝卜 IRAP 技术体系建立与品种指纹图谱构建[J].江苏农业学报,2015,(01):143.[doi:10.3969/j.issn.1000-4440.2015.01.023]
 LI Fang,XU Liang,WEI Mei-tian,et al.Establishment of inter-retrotransposon amplified polymorphism(IRAP) reaction system and construction of cultivar fingerprint in radish (Raphanus sativus L.)[J].,2015,(03):143.[doi:10.3969/j.issn.1000-4440.2015.01.023]
[3]娄丽娜,刘哲,许园园,等.萝卜与芜菁异源三倍体杂种的获得及鉴定[J].江苏农业学报,2017,(04):881.[doi:doi:10.3969/j.issn.1000-4440.2017.04.024]
 LOU Li-na,LIU Zhe,XU Yuan-yuan,et al.Production and identification of an allotriploid hybrid of radish (Raphanus sativus L.)× turnip (Brassica rapa L. spp. rapa)[J].,2017,(03):881.[doi:doi:10.3969/j.issn.1000-4440.2017.04.024]
[4]倪萌,王娟,王爽,等.克服萝卜自交不亲和性的化学试剂筛选[J].江苏农业学报,2022,38(04):1042.[doi:doi:10.3969/j.issn.1000-4440.2022.04.022]
 NI Meng,WANG Juan,WANG Shuang,et al.Screening of chemical reagents for overcoming the self-incompatibility of radish[J].,2022,38(03):1042.[doi:doi:10.3969/j.issn.1000-4440.2022.04.022]

备注/Memo

备注/Memo:
收稿日期:2022-08-11 基金项目:江苏省农业科技自主创新基金项目[CX(21)2020];江苏省环洪泽湖生态农业生物技术重点实验室自主研发课题(17HZHL015);淮安市农业科学研究院横向课题(0012021028H)作者简介:程瑞(1991-),男,安徽潜山人,博士,助理研究员,从事园艺作物种质创新应用与遗传育种研究。(Tel)18762046231;(E-mail)chengrui@jaas.ac.cn 通讯作者:赵建锋,(E-mail)350043736@qq.com
更新日期/Last Update: 2023-07-11