[1]刘昌壮,陶雨朝,杨富强,等.硫酸锰溶液浸种对玉米种子萌发期抗盐碱生理特性的影响[J].江苏农业学报,2023,(03):645-656.[doi:doi:10.3969/j.issn.1000-4440.2023.03.004]
 LIU Chang-zhuang,TAO Yu-zhao,YANG Fu-qiang,et al.Effects of soaking seeds with manganese sulfate solution on saline-alkali resistance of maize seeds during germination[J].,2023,(03):645-656.[doi:doi:10.3969/j.issn.1000-4440.2023.03.004]
点击复制

硫酸锰溶液浸种对玉米种子萌发期抗盐碱生理特性的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年03期
页码:
645-656
栏目:
遗传育种·生理生化
出版日期:
2023-06-30

文章信息/Info

Title:
Effects of soaking seeds with manganese sulfate solution on saline-alkali resistance of maize seeds during germination
作者:
刘昌壮陶雨朝杨富强刘佳奇李明
(东北农业大学农学院,黑龙江哈尔滨150030)
Author(s):
LIU Chang-zhuangTAO Yu-zhaoYANG Fu-qiangLIU Jia-qiLI Ming
(College of Agriculture, Northeast Agricultural University, Harbin 150030, China)
关键词:
盐碱胁迫玉米硫酸锰种子萌发抗氧化酶AsA-GSH循环
Keywords:
saline-alkali stressmaizemanganese sulfateseed germination antioxidant enzymesAsA-GSH cycle
分类号:
S513.041
DOI:
doi:10.3969/j.issn.1000-4440.2023.03.004
文献标志码:
A
摘要:
土壤盐碱化是影响作物生长发育和产量形成的主要非生物胁迫之一。提高盐碱胁迫下作物的出苗率和成苗率是增强作物耐盐碱能力研究的关键。本研究以郑单958为试验材料,设置盐碱胁迫和无盐碱胁迫2个生长环境,探讨了不同硫酸锰浓度[0 mmol/L(CK)、5 mmol/L、10 mmol/L、20 mmol/L]浸种对玉米种子萌发能力及生理特性的影响。结果表明:5 mmol/L硫酸锰溶液浸种处理,能够有效提高盐碱胁迫下玉米种子萌发期的芽长、根长以及发芽率,显著提高胚根的抗坏血酸和还原型谷胱甘肽等抗氧化物质的含量;胚根和胚芽的超氧化物歧化酶、过氧化氢酶、谷胱甘肽还原酶和谷胱甘肽过氧化物酶的活性和抗超氧阴离子自由基活力在0~20 mmol/L的硫酸锰溶液浸种处理中呈现先上升后下降的趋势,其中以5 mmol/L硫酸锰溶液浸种表现较好;在盐碱胁迫下,随着硫酸锰溶液浸种浓度的增加,玉米胚芽和胚根内的渗透调节物质如可溶性蛋白含量、可溶性糖含量、游离脯氨酸含量呈现先下降后上升的趋势;无盐碱胁迫时,随着硫酸锰溶液浸种浓度的增加,玉米幼苗胚芽和胚根的可溶性糖含量及游离脯氨酸含量呈现一个持续上升的趋势,丙二醛含量呈现低浓度促进高浓度抑制的特征。综上所述,利用5 mmol/L硫酸锰溶液浸种可以提高盐碱胁迫下玉米植株AsA-GSH循环中关键物质含量和酶活性,增强清除活性氧物质相关酶活性,有效促进玉米萌发期抗氧化系统运转,减弱膜脂过氧化作用,维持植株细胞膜透性,有效提高玉米种子的萌发能力以及耐盐碱能力。
Abstract:
Soil salinization is one of the major abiotic stresses affecting crop growth and yield formation. Improving the emergence rate and seedling rate of crops under saline-alkali stress is the key to enhance the saline-alkali tolerance of crops. In this study, Zhengdan 958 was used as the experimental material, and two growth environments of saline-alkali stress and no saline-alkali stress were set up. The effects of different manganese sulfate concentrations (0 mmol/L, 5 mmol/L, 10 mmol/L, 20 mmol/L ) on the germination ability and physiological characteristics of maize seeds were discussed, and the 0 mmol/L manganese sulfate solution treatment was used as control (CK). The results showed that soaking seeds with 5 mmol/L manganese sulfate solution could effectively improve the bud length, root length and germination rate of maize seeds during germination under saline-alkali stress, and significantly increase the contents of ascorbic acid and reduced glutathione in radicle. The activities of superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase and the activity of anti-superoxide anion free radical in radicle and plumule increased first and then decreased in the treatment of 0-20 mmol/L manganese sulfate solution. Among them, 5 mmol/L manganese sulfate solution treatment was better. Under saline-alkali stress, with the increase of manganese sulfate soaking concentration, the osmotic adjustment substances such as soluble protein content, soluble sugar content and free proline content in maize germ and radicle decreased first and then increased. Under no saline-alkali stress, with the increase of manganese sulfate soaking concentration, the soluble sugar content and free proline content of maize seedling germ and radicle showed a continuous upward trend, and the malondialdehyde content showed the characteristics of low concentration promotion and high concentration inhibition. In summary, soaking seeds with 5 mmol/L manganese sulfate solution could improve the content of key substances and enzyme activity in AsA-GSH cycle of maize plants under saline-alkali stress, enhance the activity of enzymes related to scavenging active oxygen substances, effectively promote the operation of antioxidant system in maize germination period, weaken the membrane lipid peroxidation, maintain the permeability of plant cell membrane, and effectively improve the germination ability and saline-alkali tolerance of maize seeds.

参考文献/References:

[1]周万海,师尚礼,寇江涛. 一氧化氮对NaCl胁迫下苜蓿种子萌发的影响[J].核农学报,2012, 26(4):710-716.
[2]李堆淑,朱广啟. 外源水杨酸对桔梗幼苗铅胁迫的缓解效应[J].山西农业科学, 2016, 44(8):1165-1168.
[3]肖小君,黄作喜,陈文年,等. 外源NO对铅胁迫下水果黄瓜种子萌发和幼苗生理特性的影响[J]. 华北农学报,2015, 30(3): 123-128.
[4]徐臣善. 钙对盐胁迫下小金海棠幼苗生物量及抗氧化系统的影响[J].植物生理学报, 2014, 50(6):817-822.
[5]JIANG X Y,SONG J,FAN H,et al. Regulations of exogenous calcium and spermidine on ion balance and polyamine levels in maize seedlings under NaCl stress[J]. Acta Phytophysiologica Sinica, 2000, 26(6): 539-544.
[6]ZHANG H, SHEN W B,XU L L. Effects of nitric oxide on the germination of wheat seeds and its reactive oxygen species metabolisms under osmotic stress[J]. Acta Botanica Sinica, 2003, 45(8): 901-905.
[7]KHAN M N, SIDDIQUI M H, MOHAMMAD F, et al. Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation[J]. Acta Physiologiae Plantarum, 2010, 32(1): 121-132.
[8]AGAMI, RAMADAN A. Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide[J]. South African Journal of Botany, 2013, 88: 171-177.
[9]MILLALEO R, REYES-DIAZ M, IVANOV A G, et al. Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms[J]. Journal of Soil Science & Plant Nutrition, 2010, 10(4): 476-494.
[10]马威,郝茂钢,刘丽梅. 锰浸种对大豆氮素代谢关键酶活性的影响[J]. 现代化农业, 2014(2): 16-18.
[11]刘鹏,徐根娣,倪建英,等. 锰浸种对大豆种子萌发和幼苗生理特性的影响[J]. 中国油料作物学报, 2002(4): 26-30.
[12]邹原东,韩振芹,张海娇,等. 不同浓度硫酸锰溶液处理对玉米种子抗氧化酶活性的影响[J]. 现代农业科技, 2021(7): 11-12.
[13]刘建凤,崔彦宏,王荣焕. 锰对玉米种子萌发及幼苗生理活性的影响[J]. 植物营养与肥料学报, 2005(2): 279-281.
[14]赵可夫,范海,王宝增,等. 改良和利用盐渍化土壤的研究进展[J]. 园林科技信息,2004 (1):32-35.
[15]胡娟,周道玮,王晓禹,等. 不同覆沙厚度下松嫩平原盐碱裸地上的种植效果[J]. 草业科学, 2021, 38(3): 410-418.
[16]马秀杰,王鸿斌,杨杨. 本然土壤调理剂对盐碱土的改良效果试验[J].吉林农业, 2019(8):46-47.
[17]CHUAMNAKTHONG S, MAMPEI M , UEDA A. Characterization of Na+ exclusion mechanism in rice under saline-alkaline stress conditions[J]. Plant Science, 2019, 287:110171.
[18]SCHMIDT S B, JENSEN P E, HUSTED S. Manganese deficiency in plants: The impact on photosystem II[J]. Trends in Plant Science, 2016, 21(7): 622-632.
[19]BRENNAN R F, BOLLAND M D A. Application of fertilizer manganese doubled yields of lentil grown on alkaline soils[J]. Journal of Plant Nutrition, 2003, 26(6): 1263-1276.
[20]刘铮,朱其清,唐丽华,等. 我国缺乏微量元素的土壤及其区域分布[J].山西农业科学, 1983(1):44.
[21]张永升,杨国航,崔彦宏. 硫酸锰浸种处理对玉米种子萌发的生理效应[J].河北农业大学学报, 2011, 34(4):5-9.
[22]石艳华,张永清,罗海婧. 化学调节物质浸种对不同水分条件下苦荞生长及其生理特性的影响[J].西北植物学报,2013,33(1):123-131.
[23]刘京萍,葛兴,李京霞,等. 聚天冬氨酸锰(Ⅱ)对干旱胁迫下菠菜抗氧化酶活性和MDA含量的影响[J].北京联合大学学报(自然科学版),2012,26(2):39-43,50.
[24]蔺吉祥,李晓宇,唐佳红,等. 盐碱胁迫对小麦种子萌发、早期幼苗生长及Na+、K+代谢的影响[J].麦类作物学报, 2011,31(6):1148-1152.
[25]赵颖,魏小红,赫亚龙,等. 混合盐碱胁迫对藜麦种子萌发和幼苗抗氧化特性的影响[J].草业学报,2019,28(2):156-167.
[26]龙艳. 浅谈玉米种子发芽试验的操作技术要领[J].种子科技,2020,38(5):24-27.
[27]LI H X, XIAO Y, CAO L L, et al. Cerebroside C increases tolerance to chilling injury and alters lipid composition in wheat roots[J]. PLoS One, 2013, 8(9): e73380.
[28]高芳. 谷胱甘肽对红松胚性愈伤组织增殖的氧化还原调控机理[D].哈尔滨:东北林业大学,2021.
[29]张智猛,宫清轩,李尚霞,等. 花生品种不同籽仁部位抗氧化能力研究[J].花生学报,2007(2):6-10.
[30]李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社, 2000.
[31]邹琦. 植物生理学实验指导[M]. 北京:中国农业出版社, 2003.
[32]王爱国,邵从本,罗广华. 丙二醛作为植物脂质过氧化指标的探讨[J]. 植物生理学通讯,1986(2): 55-57.
[33]吕思琪,张迪,张婉婷,等. 锰胁迫对不同基因型玉米幼苗氮素转化的影响[J].玉米科学,2020,28(2):84-89,95.
[34]DEBEZ A, HAMED K B, GRIGNON C, et al. Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima[J]. Plant and Soil, 2004, 262(1): 179-189.
[35]戴凌燕,张立军,张成才. 苏打盐碱胁迫对甜高粱种子萌发的影响及品种耐性综合评价[J]. 种子, 2011, 30(10): 28-32.
[36]陈忠林,张学勇,张绵,等. 碱胁迫对结缕草、高羊茅种子萌发及其胚生长的影响[J].种子,2010,29(12):27-30.
[37]时丽冉. 混合盐碱胁迫对玉米种子萌发的影响[J].衡水学院学报,2007(1):13-15.
[38]邹成林,翟瑞宁,钦 洁,等. 不同浓度PEG模拟干旱胁迫对玉米种子萌发特性的影响[J].玉米科学,2021,29(6):68-75.
[39]王妮妮. 混合盐碱胁迫对皂荚种子萌发的影响[J].东北林业大学学报,2017,45(4):14-18,27.
[40]陈金元,陈学林,满吉琳,等. 混合盐碱胁迫对红砂种子萌发的影响[J].西北农林科技大学学报(自然科学版), 2016,44(5):113-119.
[41]徐曼,王茜,王奕骁,等. 不同盐胁迫对长穗偃麦草种子萌发及幼苗生长的影响[J].中国草地学报,2020,42(1):15-20.
[42]赵楠,芦艳,左进城,等. 碱胁迫对碱蓬种子萌发的影响[J].北方园艺,2012(1):45-47.
[43]GE Y, LI Y, ZHU Y M, et al. Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment[J]. BMC Plant Biology, 2010, 10: 153.
[44]GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiol Biochem, 2010, 48(12): 909-930.
[45]张小冰,邢勇,郭乐,等. 腐植酸钾浸种对干旱胁迫下玉米幼苗保护酶活性及MDA含量的影响[J].中国农学通报,2011,27(7):69-72.
[46]GILL S S, ANJUM N A, HASANUZZAMAN M, et al. Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations[J]. Plant Physiology & Biochemistry, 2013, 70(1): 204-212.
[47]刘赵月,李蕊彤,李晶,等. 盐碱胁迫下京尼平苷对玉米种子萌发及根系AsA-GSH循环的影响[J].江苏农业学报,2020,36(4):842-850.
[48]孙军利,赵宝龙,郁松林. SA对高温胁迫下葡萄幼苗AsA-GSH循环的影响[J].核农学报,2015,29(4):799-804.
[49]刘建新,王金成,贾海燕. 燕麦幼苗对盐胁迫和碱胁迫的生理响应差异[J]. 水土保持学报,2015, 29(5): 331-336.
[50]邓平,赵英,王霞,等. 水杨酸对NaHCO3胁迫下桂西北喀斯特地区青冈栎种子萌发的影响[J].南京林业大学学报(自然科学版),2021,45(4):114-122.
[51]陈亚辉,张文韬,宋志忠,等. NaCl胁迫下施加外源钾对多枝柽柳生理的影响[J].江苏农业科学,2021,49(15):142-146.
[52]付丽,刘加珍,陶宝先,等. 盐生植物对盐渍土壤环境的适应机制研究综述[J].江苏农业科学,2021,49(15):32-39.
[53]单立山,李毅,石万里,等. 土壤水分胁迫对红砂幼苗生长和渗透调节物质的影响[J].水土保持通报,2015,35(6):106-109.
[54]马崇坚,陈小娟,黎华寿. 碱胁迫条件下皇竹草和玉米的适应性研究[J].广东农业科学, 2018, 45(1):57-63.
[55]王海珍,徐雅丽,张翠丽,等. 干旱胁迫对胡杨和灰胡杨幼苗渗透调节物质及抗氧化酶活性的影响[J].干旱区资源与环境,2015,29(12):125-130.
[56]陈璐祺,温生娟,张军杰,等. EBR对盐胁迫下玉米幼苗生理指标及抗氧化酶和水孔蛋白基因表达量的影响[J].玉米科学,2022,30(1):100-107.

相似文献/References:

[1]宝华宾,梁帅强,吕远大,等.玉米籽粒蛋白含量Meta-QTL及候选基因分析[J].江苏农业学报,2016,(04):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
 BAO Hua-bin,LIANG Shuai-qiang,LYU Yuan- da,et al.Analysis of meta-QTL and candidate genes related to protein concentration in maize grain[J].,2016,(03):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
[2]印志同,秦秋霞,阚欣,等.玉米快速叶绿素荧光参数全基因组关联分析[J].江苏农业学报,2016,(04):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
 YIN Zhi-tong,QIN Qiu-xia,KAN Xin,et al.Genome-wide association analysis of fast chlorophyll fluorescence parameters in maize[J].,2016,(03):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
[3]岳海旺,陈淑萍,彭海成,等.玉米籽粒灌浆特性品种间比较[J].江苏农业学报,2016,(05):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
 YUE Hai-wang,CHEN Shu-ping,PENG Hai-cheng,et al.Grain filling characteristics in maize materials[J].,2016,(03):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
[4]周玲,梁帅强,林峰,等.玉米二态性 InDel 位点的鉴定和分子标记开发[J].江苏农业学报,2016,(06):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
 ZHOU Ling,LIANG Shuai-qiang,LIN Feng,et al.Biallelic InDel loci detection and molecular marker development in maize[J].,2016,(03):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
[5]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
 LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(03):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[6]江彬,毕银丽,申慧慧,等.氮营养与AM真菌协同对玉米生长及土壤肥力的影响[J].江苏农业学报,2017,(02):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
 JIANG Bin,BI Yin-li,SHEN Hui-hui,et al.Synergetic effects of Arbuscular mycorrhizal fungus and nitrogen on maize growth and soil fertility[J].,2017,(03):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
[7]李国锋,葛敏,吕远大.Opaque2转录因子对玉米α-醇溶蛋白基因家族成员表达的影响[J].江苏农业学报,2015,(06):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
 LI Guo-feng,GE Min,L Yuan-da.Differential expression of α-zein family genes regulated by Opaque2 transcription factor[J].,2015,(03):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
[8]管莉,张阿英.CaM 与 ZmCCaMK 相互作用参与 BR 诱导的玉米叶片抗氧化防护[J].江苏农业学报,2015,(01):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
 GUAN Li,ZHANG A-ying.CaM-ZmCCaMK interaction involved in brassinosteroid-induced antioxidant defense in leaves of maize[J].,2015,(03):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
[9]王元琮,何冰,林峰,等.调控玉米阻止授粉后叶片衰老的QTL定位[J].江苏农业学报,2017,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
 WANG Yuan-cong,HE Bing,LIN Feng,et al.QTL mapping for pollination-prevention on leaf senescence[J].,2017,(03):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
[10]田礼欣,李丽杰,刘旋,等.外源海藻糖对盐胁迫下玉米幼苗根系生长及生理特性的影响[J].江苏农业学报,2017,(04):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
 TIAN Li-xin,LI Li-jie,LIU Xuan,et al.Root growth and physiological characteristics of salt-stressed maize seedlings in response to exogenous trehalose[J].,2017,(03):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
[11]刘赵月,李蕊彤,李晶,等.盐碱胁迫下京尼平苷对玉米种子萌发及根系AsA-GSH循环的影响[J].江苏农业学报,2020,(04):842.[doi:doi:10.3969/j.issn.1000-4440.2020.04.006]
 LIU Zhao-yue,LI Rui-tong,LI Jing,et al.Effects of geniposide on seed germination and AsA-GSH cycle in root of maize under saline-alkali stress[J].,2020,(03):842.[doi:doi:10.3969/j.issn.1000-4440.2020.04.006]

备注/Memo

备注/Memo:
收稿日期:2022-06-24 基金项目:黑龙江省玉米超高产关键技术研究项目(2017YFD03005006-2)作者简介:刘昌壮(1996-),男,山东菏泽人,硕士研究生,主要从事玉米耐盐碱生理研究。(E-mail)liu891578576@163.com 通讯作者:李明,(E-mail)liming@neau.edu.cn
更新日期/Last Update: 2023-07-11