[1]倪锋,谢鹏飞,褚荣浩,等.利用日光诱导叶绿素荧光估算高温干旱复合胁迫下夏玉米生理生态参数[J].江苏农业学报,2022,38(03):587-596.[doi:doi:10.3969/j.issn.1000-4440.2022.03.002]
 NI Feng,XIE Peng-fei,CHU Rong-hao,et al.Estimation of physiological and ecological parameters of summer maize under combined stress of heat and drought using solar-induced chlorophyll fluorescence[J].,2022,38(03):587-596.[doi:doi:10.3969/j.issn.1000-4440.2022.03.002]
点击复制

利用日光诱导叶绿素荧光估算高温干旱复合胁迫下夏玉米生理生态参数()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年03期
页码:
587-596
栏目:
遗传育种·生理生化
出版日期:
2022-06-30

文章信息/Info

Title:
Estimation of physiological and ecological parameters of summer maize under combined stress of heat and drought using solar-induced chlorophyll fluorescence
作者:
倪锋1谢鹏飞1褚荣浩2李萌1沙修竹3彭金龙1申双和4
(1.安徽农业大学资源与环境学院,安徽合肥230036;2.安徽省公共气象服务中心/安徽省气象局,安徽合肥230031;3.河南省人工影响天气中心,河南郑州450003;4.南京信息工程大学应用气象学院,江苏南京210044)
Author(s):
NI Feng1XIE Peng-fei1CHU Rong-hao2LI Meng1SHA Xiu-zhu3PENG Jin-long1SHEN Shuang-he4
(1.School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China;2.Anhui Public Meteorological Service Center/Anhui Meteorological Bureau, Hefei 230031, China;3.Weather Modification Center of Henan Province, Zhengzhou 450003, China;4.School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China)
关键词:
夏玉米高温干旱复合胁迫生理生态参数日光诱导叶绿素荧光(SIF)
Keywords:
summer maizecombined stress of heat and droughtphysiological and ecological parameterssolar-induced chlorophyll fluorescence(SIF)
分类号:
S166;S514
DOI:
doi:10.3969/j.issn.1000-4440.2022.03.002
文献标志码:
A
摘要:
高温和干旱会对农业生产活动及陆地生态系统产生严重威胁,并最终对经济和社会发展产生不利影响。本研究以夏玉米为研究对象,开展高温干旱复合胁迫田间试验,首先对比分析各胁迫处理下夏玉米形态和生理生态响应特征,之后引入日光诱导叶绿素荧光(SIF),探究各胁迫处理下夏玉米冠层SIF值日变化和不同生育阶段变化特征,最终揭示SIF值与生理生态参数之间的关联性。结果表明,高温、干旱以及高温干旱复合胁迫均会抑制夏玉米株高和叶面积,造成产量下降。在生理生态参数方面,各胁迫处理下夏玉米叶片含水量(LWC)和叶绿素含量的变化规律基本一致,随各胁迫程度的加重总体均呈现逐渐下降趋势。夏玉米冠层SIF值在日尺度上呈现“单峰”型变化特征,在不同生育阶段呈现逐渐下降趋势。基于2/3的冠层SIF值与对应LWC、叶绿素含量之间构建的线性模型的R2值分别为0.837和0.509(P<0.05);且基于上述线性模型和1/3的冠层SIF值估算的LWC和叶绿素含量估算值与实测值之间拟合的R2值分别为0.827和0.726(P<0.05),验证了利用SIF值估算高温干旱复合胁迫下夏玉米生理生态参数(LWC和叶绿素含量)的可靠性。
Abstract:
Heat and drought will pose a serious threat to agricultural activities and terrestrial ecosystems, and have a negative impact on economic and social development ultimately. In this study, summer maize was taken as the research object to carry out field experiments under combined stress of heat and drought. Firstly, the morphological and ecophysiological response characteristics of summer maize under various stresses were compared and analyzed. Then solar-induced chlorophyll fluorescence (SIF) was introduced to investigate the diurnal variation of SIF values and the variation characteristics at different growth stages of summer maize under different stress treatments. Finally, the correlation between SIF values and physiological and ecological parameters was revealed. The results showed that heat, drought and combined stress of heat and drought inhibited plant height, leaf area and yield of summer maize. In terms of physiological and ecological parameters, the changes of leaf water content (LWC) and chlorophyll content of summer maize under different stress treatments were basically consistent, presenting a gradually downward trend on the whole. On daily scale, the canopy SIF values of summer maize showed a "single peak" variation, and gradually decreased at different growth stages. In the correlation analysis, the R2 values fitting between 2/3 canopy SIF values and LWC and chlorophyll content were 0.837 and 0.509, respectively(P<0.05). The R2 values fitting between the measured value and the estimated value of the remaining 1/3 LWC and chlorophyll content were 0.827 and 0.726, respectively(P<0.05), which further verified the reliability of estimating physiological and ecological parameters (LWC and chlorophyll content) of summer maize under combined stress of heat and drought based on SIF value.

参考文献/References:

[1]郭艳春. 干旱灾害风险评估及管理对策探析[J]. 地下水, 2019, 44(4): 148-149.
[2]纪瑞鹏,于文颖,冯锐,等. 作物对干旱胁迫的响应过程与早期识别技术研究进展[J]. 灾害学, 2019, 34(2): 153-160.
[3]胡鹏飞. 基于多源遥感数据的农业旱情监测方法比较研究[D]. 兰州:西北师范大学, 2019.
[4]方子松,龙华,金隆英,等. 干旱胁迫对云南薏苡新品种形态和生理指标的影响[J]. 农业科学与技术(英文版), 2019, 20(1):22-29.
[5]庄克章,吴荣华,张春艳,等. 苗期干旱及复水对玉米生长和生理特性的影响[J]. 山东农业科学, 2020, 52(350): 61-66.
[6]崔丽娜,董树亭. 不同氮肥处理下高温胁迫对夏玉米产量及叶片超微构造的影响[J]. 玉米科学, 2020, 28(137): 96-101.
[7]邵宇航,石祖梁,张姗,等. 高温胁迫下镁对小麦旗叶光合特性及产量的影响[J]. 麦类作物学报, 2018, 38(7): 802-808.
[8]费立伟. 晚播对冬小麦灌浆后期高温胁迫下光合能力和产量的影响[D]. 泰安:山东农业大学, 2020.
[9]郝召君,周春华,刘定,等. 高温胁迫对芍药光合作用、叶绿素荧光特性及超微结构的影响[J]. 分子植物育种, 2017,15(6):2359-2367.
[10]关琳琳. 基于叶绿素荧光的植被总初级生产力估算[D]. 北京:中国科学院大学, 2017.
[11]刘雷震,武建军,周洪奎,等. 叶绿素荧光及其在水分胁迫监测中的研究进展[J]. 光谱学与光谱分析, 2017, 37(9): 2780-2787.
[12]程占慧,刘良云. 基于叶绿素荧光发射光谱的光能利用率探测[J]. 农业工程学报, 2010, 26(S2): 74-80.
[13]詹春晖,章钊颖,张永光. 日光诱导叶绿素荧光辐射传输模型研究进展[J]. 遥感学报, 2020, 24(8): 945-957.
[14]DOBROWSKI S Z, PUSHNIK J C, ZARCO-TEJADA P J, et al. Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale[J]. Remote Sensing of Environment, 2005, 97: 403-414.
[15]ALEXANDER A, MALENOVSKY Z, OLEJNICKOVA J, et al. Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress[J]. Remote Sensing of Environment, 2015, 168: 420-436.
[16]DAUMARD F, CHAMPAGNE S, FOURNIER A, et al. A field platform for continuous measurement of canopy fluorescence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48: 3358-3368.
[17]LIU L, YANG X, ZHOU H, et al. Evaluating the utility of solar-induced chlorophyll fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy[J]. Science of the Total Environment, 2018, 625: 1208-1217.
[18]LEE J E, FRANKENBERG C, VANDERTOL C, et al. Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence[J]. Proceedings of the Royal Society B(Biological Sciences), 2013, 280: 20130171.
[19]WANG X, QIU B, LI W, et al. Impacts of drought and heatwave on the terrestrial ecosystem in China as revealed by satellite solar-induced chlorophyll fluorescence[J]. Science of the Total Environment, 2019, 693: 133627.
[20]SONG L, LUIS G, GUAN K, et al. Satellite sun-induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains[J]. Global Change Biology, 2018, 24(9): 4023-4037.
[21]王江山. 生态与农业气象[M]. 北京:气象出版社, 2005.
[22]MOYA I, CAMENEN L, EVAIN S, et al. A new instrument for passive remote sensing[J]. Remote Sensing of Environment, 2004, 91: 186-197.
[23]刘良云,张永江,王纪华,等. 利用夫琅和费暗线探测自然光条件下的植被光合作用荧光研究[J]. 遥感学报, 2006, 10(1): 130-137.
[24]DAMM A, ERLER A, HILLEN W, et al. Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence[J]. Remote Sensing of Environment, 2011, 115: 1882-1892.
[25]MERONI M, BUSETTO L, COLOMBO R, et al. Performance of spectral fitting methods for vegetation fluorescence quantification[J]. Remote Sensing of Environment, 2010, 114: 363-374.
[26]问静怡. 基于日光诱导荧光的水稻铜胁迫遥感监测机理研究[D]. 杭州:杭州师范大学, 2019.
[27]王冉,刘志刚,杨沛琦. 植物日光诱导叶绿素荧光的遥感原理及研究进展[J]. 地球科学进展, 2012, 27(11): 1221-1228.
[28]李萌. 夏玉米理化参数对连续水分胁迫的响应特征及遥感监测[D].南京:南京信息工程大学, 2018.
[29]陈秀青,杨琦,韩景晔, 等. 基于叶冠尺度高光谱的冬小麦叶片含水量估算[J]. 光谱学与光谱分析, 2020, 40(3): 233-239.
[30]王秋玲. 夏玉米生理生态与生长特性对干旱过程的响应研究[D].北京:中国气象科学研究院, 2015.
[31]刘红芳,邸仕忠,姚启伦. 热带和温带玉米对干旱的形态生理应答[J]. 安徽大学学报(自然科学版), 2020, 44(3): 92-99.
[32]宋晋辉,瓮巧云,吕爱枝,等. 拔节期干旱胁迫对青贮玉米生育与品质的影响[J]. 中国农业科技导报, 2020, 22(154): 167-173.
[33]宋贺,蒋延玲,许振柱,等. 玉米光合生理参数对全生育期干旱与拔节后干旱过程的响应[J]. 生态学报, 2019, 39(7): 2405-2415.
[34]印玉明,王永清,马春晨,等. 利用日光诱导叶绿素荧光监测水稻叶片叶绿素含量[J]. 农业工程学报, 2021, 37(12): 169-180.
[35]SUN Y, FU R, DICKINSON R, et al. Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence: Insights from two contrasting extreme events[J]. Journal of Geophysical Research(Biogeosciences), 2016, 120: 2427-2440.
[36]CHEN X, MO X, ZHANG Y, et al. Drought detection and assessment with solar-induced chlorophyll fluorescence in summer maize growth period over North China Plain[J]. Ecological Indicators, 2019, 104: 347-356.

相似文献/References:

[1]田宏伟,邢开成,黄进,等.近30年河南省夏玉米的气象年景波动对大气环流的响应[J].江苏农业学报,2020,(06):1437.[doi:doi:10.3969/j.issn.1000-4440.2020.06.012]
 TIAN Hong-wei,XING Kai-cheng,HUANG Jin,et al.Responses of fluctuations of annual meteorological harvest for summer maize to atmospheric circulation in Henan province during recent 30 years[J].,2020,(03):1437.[doi:doi:10.3969/j.issn.1000-4440.2020.06.012]
[2]尚赏,郭书亚,张艳,等.不同收获期对豫东地区夏玉米机械粒收质量的影响[J].江苏农业学报,2021,(04):867.[doi:doi:10.3969/j.issn.1000-4440.2021.04.008]
 SHANG Shang,GUO Shu-ya,ZHANG Yan,et al.Effects of different harvesting date on mechanical grain-harvesting quality of summer maize in Eastern Henan[J].,2021,(03):867.[doi:doi:10.3969/j.issn.1000-4440.2021.04.008]
[3]傅鹏霄,王珏,李广浩,等.不同栽培模式对江苏省夏玉米产量和氮素利用的影响[J].江苏农业学报,2021,(05):1151.[doi:doi:10.3969/j.issn.1000-4440.2021.05.009]
 FU Peng-xiao,WANG Jue,LI Guang-hao,et al.Effects of different cultivation patterns on the yield and nitrogen utilization of summer maize in Jiangsu province[J].,2021,(03):1151.[doi:doi:10.3969/j.issn.1000-4440.2021.05.009]
[4]郑智康,常庆瑞,符欣彤,等.基于变换光谱与光谱指数的夏玉米叶片含水率高光谱估算[J].江苏农业学报,2023,(09):1883.[doi:doi:10.3969/j.issn.1000-4440.2023.09.010]
 ZHENG Zhi-kang,CHANG Qing-rui,FU Xin-tong,et al.Hyperspectral estimation of leaf water content of summer maize based on transformed spectrum and spectral index[J].,2023,(03):1883.[doi:doi:10.3969/j.issn.1000-4440.2023.09.010]

备注/Memo

备注/Memo:
收稿日期:2021-08-16基金项目:国家自然科学基金项目(41905100);安徽省自然科学基金项目(2108085QD157、1908085QD171);国家重点研发计划项目(2018YFD0300905);安徽农业大学青年基金重点项目(2018zd07);安徽农业大学引进与稳定人才资助项目(yj2018-57)作者简介:倪锋(1997-),男,安徽安庆人,硕士研究生,主要从事农业气象研究。(E-mail)2934608403@qq.com通讯作者:李萌,(E-mail)mengli@ahau.edu.cn;褚荣浩,(E-mail)ronghao_chu@163.com
更新日期/Last Update: 2022-07-07