[1]戴毅,田龙果,潘贞志,等.激素和非生物逆境胁迫调控植物硝酸盐转运蛋白功能的研究进展[J].江苏农业学报,2020,(06):1595-1604.[doi:doi:10.3969/j.issn.1000-4440.2020.06.033]
 DAI Yi,TIAN Long-guo,PAN Zhen-zhi,et al.Research progress on the regulation of plant nitrate transporter functions by hormones and abiotic stress[J].,2020,(06):1595-1604.[doi:doi:10.3969/j.issn.1000-4440.2020.06.033]
点击复制

激素和非生物逆境胁迫调控植物硝酸盐转运蛋白功能的研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年06期
页码:
1595-1604
栏目:
综述
出版日期:
2020-12-31

文章信息/Info

Title:
Research progress on the regulation of plant nitrate transporter functions by hormones and abiotic stress
作者:
戴毅12田龙果1潘贞志1陈林1宋丽12
(1.教育部农业与农产品安全国际合作联合实验室/扬州大学农业科技发展研究院,江苏扬州225009;2.江苏省粮食作物现代产业技术协同创新中心/扬州大学,江苏扬州225009)
Author(s):
DAI Yi12TIAN Long-guo1PAN Zhen-zhi1CHEN Lin1SONG Li12
(1.Joint International Research Laboratory of Agriculture and Agri-product Safety/Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China;2.Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Yangzhou University, Yangzhou 225009, China)
关键词:
硝酸盐转运蛋白植物激素逆境
Keywords:
nitrate transporterplant hormoneabiotic stress
分类号:
Q756
DOI:
doi:10.3969/j.issn.1000-4440.2020.06.033
文献标志码:
A
摘要:
植物硝酸盐转运蛋白不仅担负着硝酸离子吸收、转运的功能,还参与植物诸多生理发育过程。本文重点介绍了激素和硝酸盐转运蛋白在植物生长发育过程中的相互作用,硝酸盐转运蛋白参与非生物逆境胁迫响应方面的最新研究进展,以及激素和逆境协同参与硝酸盐转运蛋白表达和功能的调控机制,最后对硝酸盐转运蛋白在激素信号传导和抗逆境胁迫中的应用以及未来可能开展的研究方向提出了展望。
Abstract:
Plant nitrate transporters are responsible for the absorption and transport of nitrate ions, and participate in various physiological processes of plants. This review focused on the interactions between hormones and nitrate transporters during plant growth and development, the roles of nitrate transporters in abiotic stress, and the synergistic effects of hormone and abiotic stress on the expression and function of nitrate transporters. Finally, the application of nitrate transporter in hormone signal transduction and stress resistance was proposed.

参考文献/References:

[1]蒋志敏, 王 威, 储成才. 植物氮高效利用研究进展和展望[J]. 生命科学, 2018, 30(10):1060-1071.
[2]FRINK C R, WAGGONER P E, AUSUBEL J H. Nitrogen fertilizer: retrospect and prospect[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1175-1180.
[3]STITT M, KRAPP A. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background [J]. Plant, Cell and Environment, 1999, 22(6): 583-621.
[4]SURYA K, YONG M B, ROTHSTEIN S J. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency[J]. Journal of Experimental Botany, 2011, 62(4): 1499-1509.
[5]WANG M Y, SIDDIQI M Y, RUTH T J, et al. Ammonium uptake by rice roots (II. Kinetics of 13NH+4 influx across the plasmalemma) [J]. Plant Physiology, 1993, 103(4): 1259-1267.
[6]ALBORESI A, GESTIN C, LEYDECKER M T, et al. Nitrate, a signal relieving seed dormancy in Arabidopsis[J]. Plant, Cell and Environment, 2005, 28(4): 500-512.
[7]WALCH-LIU P, NEUMANN G, BANGERTH F, et al. Rapid effects of nitrogen form on leaf morphogenesis in tobacco[J]. Journal of Experimental Botany, 2000, 51(343): 227-237.
[8]WANG Y Y, HSU P K, TSAY Y F. Uptake, allocation and signaling of nitrate[J]. Trends in Plant Science, 2012, 17(8): 458-467.
[9]LRAN S, VARALA K, BOYER J C, et al. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants[J]. Trends in Plant Science, 2014, 19(1): 5-9.
[10]WANG Y Y, CHENG Y H, CHEN K E, et al. Nitrate transport, signaling, and use efficiency[J]. Annual Review of Plant Biology, 2018, 69(1): 85-122.
[11]RYOICHI A, HIROSHI H. Expression of rice (Oryza sativa L.) genes involved in high-affinity nitrate transport during the period of nitrate induction[J]. Breeding Science, 2006, 56(3): 295-302.
[12]FENG H, YAN M, FAN X, et al. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status[J]. Journal of Experimental Botany, 2011, 62(7): 2319-2332.
[13]TSAY Y F, SCHROEDER J I, FELDMANN K A, et al. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter[J]. Cell, 1993, 72(5): 705-713.
[14]VON WITTGENSTEIN N J, LE C H, HAWKINS B J, et al. Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants[J]. BMC Evolutionary Biology, 2014, 14(1): 11.
[15]LIU K H, HUANG C, TSAY Y. CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake[J]. Plant Cell, 1999, 11(5): 865-874.
[16]MORRE-LE P M C, LAURE V, ALAIN H, et al. Characterization of a dual-affinity nitrate transporter MtNRT1.3 in the model legume Medicago truncatula[J]. Journal of Experimental Botany, 2011, 62(15): 5595-5605.
[17]UNKLES S E, HAWKER K L, GRIEVE C, et al. crnA encodes a nitrate transporter in Aspergillus nidulans[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(1): 204-208.
[18]TRUEMAN L J, ONYEOCHA I, FORDE B G. Recent advances in the molecular biology of a family of eukaryotic high affinity nitrate transporters[J]. Plant Physiology and Biochemistry, 1996, 34(5): 621-627.
[19]MILLER A J, FAN X, ORSEL M, et al. Nitrate transport and signalling[J]. Journal of Experimental Botany, 2007, 58(9): 2297-2306.
[20]KOTUR Z, MACKENZIE N, RAMESH S, et al. Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1[J]. New Phytologist, 2012, 194(3): 724-731.
[21]KOTUR Z, GLASS A D M. A 150 kDa plasma membrane complex of AtNRT2.5 and AtNAR2.1 is the major contributor to constitutive high-affinity nitrate influx in Arabidopsis thaliana[J]. Plant, Cell and Environment, 2015, 38(8): 1490-1502.
[22]FAN X R, NAZ M, FAN X R, et al. Plant nitrate transporters: from gene function to application[J]. Journal of Experimental Botany, 2017, 68(10): 2463-2475.
[23]KROUK G. Hormones and nitrate: a two-way connection[J]. Plant Molecular Biology, 2016, 91(6): 599-606.
[24]郑冬超,夏新莉,尹伟伦. 生长素促进拟南芥AtNRT1.1基因表达增强硝酸盐吸收[J]. 北京林业大学学报, 2013, 35(2): 80-85.
[25]ASIM M, ULLAH Z, OLUWASEUN A, et al. Signalling overlaps between nitrate and auxin in regulation of the root system architecture: insights from the Arabidopsis thaliana [J].International Journal of Molecular Sciences,2020,21(8): 2880.
[26]LIU P W, IVANOV L L, FILLEUR S, et al. Nitrogen regulation of root branching [J]. Annals of Botany, 2006, 97(5): 875-881.
[27]KROUK G, LACOMBE B, BIELACH A, et al. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants [J]. Developmental Cell, 2010, 18(6): 927-937.
[28]CHAI S, LI E, ZHANG Y, et al. NRT1.1-mediated nitrate suppression of root coiling relies on PIN2-and AUX1-mediated auxin transport[J]. Frontiers in Plant Science, 2020, 11: 671.
[29]VIDAL E A, ARAUS V, LU C, et al. Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(9):4477-4482.
[30]VIDAL E A, MOYANO T C, RIVERAS E, et al. Systems approaches map regulatory networks downstream of the auxin receptor AFB3 in the nitrate response of Arabidopsis thaliana roots[J]. Proceedings of the National Academy of Sciences, 2013, 110(31): 12840-12845.
[31]ASIM M, ULLAH Z, XU F, et al. Nitrate signaling, functions, and regulation of root system architecture: insights from Arabidopsis thaliana[J]. Genes, 2020, 11(6): 633.
[32]FAN H M, SUN C H, WEN L Z, et al. CmTCP20 plays a key role in nitrate and auxin signalling-regulated lateral root development in chrysanthemum[J]. Plant and Cell Physiology,2019, 60(7):1581-1594.
[33]LIU J X, AN X, CHENG L, et al. Auxin transport in maize roots in response to localized nitrate supply [J]. Annals of Botany, 2010, 106(6): 1019-1026.
[34]PAVLIKOVA D, NEUBERG M, ZIZKOVA E, et al. Interactions between nitrogen nutrition and phytohormone levels in Festulolium plants[J]. Plant Soil and Environment, 2012, 58(8): 367-372.
[35]GUTIRREZ R A, LEJAY L V, DEAN A, et al. Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis[J]. Genome Biology, 2007, 8: R7.
[36]SAKAKIBARA H. Cytokinins: activity, biosynthesis, and translocation[J]. Annual Review of Plant Biology, 2006,57:431-449.
[37]TAKEI K, UEDA N, AOKI K, et al. AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis[J]. Plant and Cell Physiology, 2004, 45(8):1053-1062.
[38]MIYAWAKI K, MATSUMOTO-KITANO M, KAKIMOTO T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate[J]. The Plant Journal, 2004, 37:128-138.
[39]李志康,严冬,薛张逸,等. 细胞分裂素对植物生长发育的调控机理研究进展及其在水稻生产中的应用探讨[J]. 中国水稻科学, 2018, 32(4): 311-324.
[40]SEGUELA M, BRIAT J F, VERT G, et al. Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway[J]. The Plant Journal, 2008, 55(2): 289-300.
[41]FRANCO-ZORRILLA J M, MARTIN A C, SOLANO R, et al. Mutations at CRE1 impair cytokinin-induced repression of phosphate starvation responses in Arabidopsis[J]. The Plant Journal, 2002, 32(3): 353-360.
[42]MARUYAMA-NAKASHITA A, NAKAMURA Y, YAMAYA T, et al. A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation[J]. The Plant Journal, 2004, 38(5): 779-789.
[43]GUO Q, LOVE J, SONG J, et al. Insights into the functional relationship between cytokinin-induced root system phenotypes and nitrate uptake in Brassica napus[J]. Functional Plant Biology, 2017, 44(8): 832-844.
[44]CHIU C C, LIN C S, HSIA A P, et al. Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development[J]. Plant and Cell Physiology, 2004, 45(9): 1139-1148.
[45]CHOPIN F, WIRTH J, DORBE M F, et al. The Arabidopsis nitrate transporter AtNRT2.1 is targeted to the root plasma membrane[J]. Plant Physiology and Biochemistry, 2007, 45(8): 630-635.
[46]FAN S C, LIN C S, HSU P K, et al. The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate[J]. The Plant Cell, 2009, 21(9): 2750-2761.
[47]KIBA T, KUDO T, KOJIMA M, et al. Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin[J]. Journal of Experimental Botany, 2011, 62(4): 1399-1409.
[48]KUDO T, KIBA T, SAKAKIBARA H. Metabolism and long-distance translocation of cytokinins[J]. Journal of Integrative Plant Biology, 2010, 52(1): 53-60.
[49]SHTRATNIKOVA V Y, KUDRYAKOVA N V, KUDOYAROVA G R, et al. Effects of nitrate and ammonium on growth of Arabidopsis thaliana plants transformed with the ARR5::GUS construct and a role for cytokinins in suppression of disturbances induced by the presence of ammonium[J]. Russian Journal of Plant Physiology, 2015, 62(6): 741-752.
[50]DUGARDEYN J, STRAETEN D V D. Ethylene: Fine-tuning plant growth and development by stimulation and inhibition of elongation[J]. Plant Science, 2008, 175(1/2): 59-70.
[51]TIAN Q Y, SUN P, ZHANG W H. Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thaliana[J]. New Phytologist, 2009, 184(4): 918-931.
[52]LEBLANC A, RENAULT H, LECOURT J, et al. Elongation changes of exploratory and root hair systems induced by aminocyclopropane carboxylic acid and aminoethoxyvinylglycine affect nitrate uptake and BnNrt2.1 and BnNrt1.1 transporter gene expression in oilseed rape[J]. Plant Physiology, 2008, 146: 1928-1940.
[53]ZHENG D, HAN X, AN Y, et al. The nitrate transporter NRT2.1 functions in the ethylene response to nitrate deficiency in Arabidopsis[J]. Plant Cell and Environment, 2013, 36(7):1328-1337.
[54]SIGNORA L, DE SMET I, FOYER C H, et al. ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis[J]. The Plant Journal, 2001, 28(6): 655-662.
[55]DE SMET I, SIGNORA L, BEECKMAN T, et al. An abscisic acid-sensitive checkpoint in lateral root development in Arabidopsis[J]. The Plant Journal, 2003, 33(3): 543-555.
[56]KANNO Y, HANADA A, CHIBA Y, et al. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(24): 9653-9658
[57]GUAN P. Dancing with hormones: A current perspective of nitrate signaling and regulation in Arabidopsis[J]. Frontiers in Plant Science, 2017, 8:1697.
[58]HO C H, LIN S H, HU H C, et al. CHL1 functions as a nitrate sensor in plants[J]. Cell, 2009, 138(6): 1184-1194.
[59]LRAN S, EDEL K H, PERVENT M, et al. Nitrate sensing and uptake in Arabidopsis are enhanced by ABI2, a phosphatase inactivated by the stress hormone abscisic acid[J]. Science Signaling, 2015, 8(375): ra43.
[60]白龙强,刘玉梅,慕英,等. 赤霉素对根区亚低温下黄瓜幼苗氮代谢与吸收的影响[J]. 园艺学报, 2018, 45(10): 1917-1928.
[61]SUGIURA M, GEORGESCU M N, TAKAHASHI M. A nitrite transporter associated with nitrite uptake by higher plant chloroplasts[J]. Plant Cell Physiology, 2007, 48(7): 1022-1035.
[62]CHIBA Y, SHIMIZU T, MIYAKAWA S, et al. Identification of Arabidopsis thaliana NRT1/PTR family (NPF) proteins capable of transporting plant hormones[J]. Journal of Plant Research, 2015, 128(4): 679-686.
[63]DAVID L C, BERQUIN P, KANNO Y, et al. N availability modulates the role of NPF3.1, a gibberellin transporter, in GA-mediated phenotypes in Arabidopsis[J]. Planta, 2016, 244: 1315-1325.
[64]IZMAILOV S F, NIKITIN A V. Nitrate signaling in plants: mechanisms of implementation[J]. Russian Journal of Plant Physiology, 2020, 67(1): 31-44.
[65]CHEN C Z, LV X F, LI J Y, et al. Arabidopsis NRT1.5 is another essential component in the regulation of nitrate reallocation and stress tolerance[J]. Plant Physiology, 2012, 159(4): 1582-1590.
[66]BASSETT C L, BALDO A M, MOORE J T, et al. Genes responding to water deficit in apple (Malus×domestica Borkh.) roots[J]. BMC Plant Biology, 2014, 14:182.
[67]DUAN J, TIAN H, GAO Y. Expression of nitrogen transporter genes in roots of winter wheat (Triticum aestivum L.) in response to soil drought with contrasting nitrogen supplies[J]. Crop and Pasture Science, 2016, 67(2): 128-136.
[68]GUO F Q, YOUNG J, CRAWFORD N M. The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis[J]. The Plant Cell, 2002, 15(1): 107-117.
[69]TAOCHY C, GAILLARD I, IPOTESI E, et al. The Arabidopsis root stele transporter NPF2.3 contributes to nitrate translocation to shoots under salt stress[J]. The Plant Journal, 2015,83 (3): 466-479.
[70]ZHANG G B, MENG S, GONG J M. The expected and unexpected roles of nitrate transporters in plant abiotic stress resistance and their regulation[J]. International Journal of Molecular Sciences, 2018, 19: 3535.
[71]LI J Y, FU Y L, PIKE S M, et al. The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance[J]. The Plant Cell, 2010, 22(5): 1633-1646.
[72]LIN S H, KUO H F, CANIVENC G, et al. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport[J]. The Plant Cell, 2008, 20(9): 2514-2528.
[73]MA Y, YANG Y, LIU R, et al. Adaptation of euhalophyte Suaeda salsa to nitrogen starvation under salinity[J]. Plant Physiology and Biochemistry, 2020, 146: 287-293.
[74]LI B, BYRT C, QIU J, et al. Identification of a stelar-localized transport protein that facilitates root-to-shoot transfer of chloride in Arabidopsis[J]. Plant Physiolpgy, 2016, 170(2): 1014-1029.
[75]LI B, QIU J, JAYAKANNAN M, et al. AtNPF2. 5 modulates chloride (Cl-) efflux from roots of Arabidopsis thaliana[J]. Frontiers in Plant Science, 2017, 7: 2013.
[76]YANG Y, QIN Y, XIE C, et al. The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase [J]. The Plant Cell, 2010, 22(4): 1313-1332.
[77]FANG X Z, TIAN W H, LIU X X, et al. Alleviation of proton toxicity by nitrate uptake specifically depends on nitrate transporter 1.1 in Arabidopsis[J]. New Phytologist, 2016, 211(1): 149-158.
[78]SEGONZAC C, BOYER J C, IPOTESI E, et al. Nitrate efflux at the root plasma membrane: identification of an Arabidopsis excretion transporter[J]. The Plant Cell, 2007, 19(11): 3760-3777.
[79]FAN X, TANG Z, TAN Y, et al. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (26): 7118-7123.
[80]ZHANG G B, YI H Y, GONG J M. The Arabidopsis ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation[J]. The Plant Cell, 2014, 26(10): 3984-3998.
[81]MAO Q Q, GUAN M Y, LU K X, et al. Inhibition of nitrate transporter 1.1-controlled nitrate uptake reduces cadmium uptake in Arabidopsis[J]. Plant Physiology, 2014, 166(2): 934-944.
[82]PAN W, YOU Y, WENG Y N, et al. Zn stress facilitates nitrate transporter 1.1-mediated nitrate uptake aggravating Zn accumulation in Arabidopsis plants[J]. Ecotoxicology and Environmental Safety, 2020, 190: 110104.
[83]KIBA T, KRAPP A. Plant nitrogen acquisition under low availability: regulation of uptake and root architecture[J]. Plant Cell Physiology, 2016, 57(4): 707-714.
[84]REMANS T, NACRY P, PERVENT M, et al. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis[J]. Plant Physiology, 2006, 140: 909-921.
[85]FILLEUR S, DORBE M F, CEREZO M, et al. An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake[J]. FEBS Letters, 2001, 489(2): 220-224.
[86]CEREZO M, TILLARD P, FILLEUR S, et al. Major alterations of the regulation of root NO-3 uptake are associated with the mutation of NRT2.1 and Nrt2.2 genes in Arabidopsis[J]. Plant Physiology, 2001, 127: 262-271.
[87]LEZHNEVA L, KIBA T, FERIA-BOURRELLIER A B, et al. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants[J]. The Plant Journal, 2014, 80(2): 230-241.
[88]KIBA T, FERIA-BOURRELLIER A B, LAFOUGE F, et al. The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants[J]. The Plant Cell, 2012, 24(1): 245-258.
[89]DAVIRE J M, ACHARD P. Gibberellin signaling in plants[J]. Development, 2013, 140 (6): 1147-1151.
[90]GOEL P, SINGH A K. Abiotic stresses downregulate key genes involved in nitrogen uptake and assimilation in Brassica juncea L.[J]. PLoS One, 2015, 10(11): e0143645.
[91]TABATA R, SUMIDA K, YOSHII T, et al. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling[J]. Science, 2014, 346(6207): 343-346.

相似文献/References:

[1]刘强,柳正葳,刘召亮,等.一氧化氮对铝胁迫下烟草根系营养元素吸收和呼吸电子传递及内源激素含量的影响[J].江苏农业学报,2020,(02):292.[doi:doi:10.3969/j.issn.1000-4440.2020.02.006]
 LIU Qiang,LIU Zheng-wei,LIU Zhao-liang,et al.Effects of nitric oxide on nutrient uptake, respiratory electron transfer and endogenous phytohormones contents in roots of tobacco seedlings under aluminum stress[J].,2020,(06):292.[doi:doi:10.3969/j.issn.1000-4440.2020.02.006]

备注/Memo

备注/Memo:
收稿日期:2020-07-28基金项目:国家自然科学基金项目(31871540);江苏省重点研发计划(现代农业)项目(BE2019376)作者简介:戴毅(1989-),男,江苏扬州人,博士,助理研究员,主要从事作物优异基因的挖掘及功能研究。(E-mail)daiyi@yzu.edu.cn通讯作者:宋丽,(E-mail)songli@yzu.edu.cn
更新日期/Last Update: 2021-01-15