[1]赵君,张大伟,徐剑文,等.陆地棉VR018抗黄萎病QTL定位[J].江苏农业学报,2018,(06):1232-1238.[doi:doi:10.3969/j.issn.1000-4440.2018.06.005]
 ZHAO Jun,ZHANG Da-wei,XU Jian-wen,et al.Quantitative trait locus mapping for Verticillium wilt resistance in upland cotton VR018[J].,2018,(06):1232-1238.[doi:doi:10.3969/j.issn.1000-4440.2018.06.005]
点击复制

陆地棉VR018抗黄萎病QTL定位()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年06期
页码:
1232-1238
栏目:
遗传育种·生理生化
出版日期:
2018-12-25

文章信息/Info

Title:
Quantitative trait locus mapping for Verticillium wilt resistance in upland cotton VR018
作者:
赵君1张大伟2徐剑文1徐海江2刘剑光1朱家辉2吴巧娟1孔杰2肖松华1阿里普·艾尔西2
(1.江苏省农业科学院经济作物研究所/农业部长江下游棉花和油菜重点实验室,江苏南京210014;2.新疆农业科学院经济作物研究所,新疆乌鲁木齐830091)
Author(s):
ZHAO Jun1ZHANG Da-wei2XU Jian-wen1XU Hai-jiang2LIU Jian-guang1ZHU Jia-hui2WU Qiao-juan1KONG Jie2XIAO Song-hua1AUPU Aierxi2
(1.Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Nanjing 210014, China;2.Institute of Industrial Crops Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China)
关键词:
棉花黄萎病分子标记QTL
Keywords:
cottonVerticillium wiltmolecular markerquantitative trait locus
分类号:
S562
DOI:
doi:10.3969/j.issn.1000-4440.2018.06.005
文献标志码:
A
摘要:
黄萎病是棉花生产中的主要病害。由于陆地棉中严重缺乏高抗黄萎病的品种,棉花抗黄萎病育种研究进展缓慢。本研究室从泗棉3号与中植棉2号杂交后代中选育获得1个黄萎病抗性显著提高的新品系苏VR018,利用3 100对SSR引物对泗棉3号和苏VR018进行多态性分析,获得具有多态性的标记32个;以苏VR018为母本,泗棉3号为父本,杂交构建包含312个单株的F2群体,构建包含17个位点和6个连锁群的连锁图谱。F2∶3家系接种落叶型黄萎病菌V991,调查抗病性,通过复合区间作图法共检测到4个与棉花抗黄萎病相关的QTL,分别位于染色体A5、染色体D5、染色体D5和染色体D6染色体上,表型贡献率分别为641%、378%、461% 和578%。单标记分析检测到与黄萎病抗性显著关联的位点5个,分别为NAU3212、MGHES40、DPL209、CIR181和NAU5204,解释表型变异分别为638%、150%、280%、210% 和220%。本研究为深入解析中植棉2号的抗黄萎病遗传机制奠定了理论基础。
Abstract:
Verticillium wilt(VW) is one of the most crushing diseases in cotton production. Due to the lack of varieties with high resistance to Verticillium dahliae (V. dahliae) in upland cotton, the progress of disease resistance breeding was slow. We acquired a resistance line, SuVR018 with the higher resistance to V. dahliae, which was selected from F2 segregated population crossing by Simian 3 and Zhongzhimian 2. In this study, 3 100 pairs of SSR primers were used to detect polymorphism of SuVR018 and Simian 3, and 32 SSR markers with polymorphism were identified. Using SuVR018 as female parent and Simian 3 as male parent, the F2 population with 312 individual plants was constructed by hybridization, and the linkage map with 17 polymorphic loci six linkage groups was constracted. In order to investigate the resistance to V. dahliae strain V991, F2∶3 families were inoculated. Four QTLs related to V. dahliae were detected on Chr.A5, Chr.D5, Chr.D5 and Chr.D6, and the phenotypic contribution rates were 6.41%, 3.78%, 461% and 5.78%, respectively. With association analysis, five loci associated with VW resistance were detected, which were NAU3212, MGHES40, DPL209, CIR181 and NAU5204, and explained 6.38%, 1.50%, 2.80%, 2.10% and 2.20% of the phenotypic variation, respectively. These results lay a theoretical foundation for further analysis of the resistant mechanism to VW in Zhongzhimian 2.

参考文献/References:

[1]FRADIN E F, THOMMA B P H J. Physiology and molecular aspects of Verticillium wilt diseases caused by V-dahliae and V-albo-atrum[J]. Molecular Plant Pathology, 2006, 7(2): 71-86.
[2]JOHANSSON A, STAAL J, DIXELIUS C. Early responses in the Arabidopsis-Verticillium longisporum pathosystem are dependent on NDR1, JA- and ET-associated signals via cytosolic NPR1 and RFO1[J]. Molecular Plant-Microbe Interactions, 2006, 19(9): 958-969.
[3]杨璨,孙全,王微娜,等. 海岛棉单萜合酶基因克隆及其受黄萎病诱导的表达分析[J].南方农业学报,2016,47(5):604-610.
[4]GAO W, LONG L, ZHU L F, et al. Proteomic and Virus-induced gene silencing (VIGS) analyses reveal that Gossypol, Brassinosteroids, and Jasmonic acid contribute to the resistance of cotton to Verticillium dahliae[J]. Molecular & Cellular Proteomics, 2013, 12(12): 3690-3703.
[5]MO H J, SUN Y X, ZHU X L, et al. Cotton S-adenosylmethionine decarboxylase-mediated spermine biosynthesis is required for salicylic acid- and leucine-correlated signaling in the defense response to Verticillium dahliae[J]. Planta, 2016, 243(4): 1023-1039.
[6]MO H J, WANG X F, ZHANG Y, et al. Cotton polyamine oxidase is required for spermine and camalexin signalling in the defence response to Verticillium dahliae[J]. Plant Journal, 2015, 83(6): 962-975.
[7]郝蔚,王丽丽,景伟文,等.接种落叶型黄萎病菌棉株的棉酚和单宁含量与抗病性的关系[J].江苏农业科学,2016,44(2):147-151.
[8]ZHAO J, LIU J G, XU J W, et al. Quantitative trait locus mapping and candidate gene analysis for Verticillium Wilt resistance using Gossypium barbadense Chromosomal segment introgressed line[J]. Front Plant Sci,2018, 9: 682.
[9]MIAO W G, WANG X B, SONG C F, et al. Transcriptome analysis of Hpa1(Xoo) transformed cotton revealed constitutive expression of genes in multiple signalling pathways related to disease resistance[J]. Journal of Experimental Botany, 2010, 61(15): 4263-4275.
[10]TIAN J A, ZHANG X Y, LIANG B G, et al. Expression of Baculovirus anti-apoptotic genes p35 and op-iap in cotton (Gossypium hirsutum L.) enhances tolerance to Verticillium Wilt[J]. PLoS ONE, 2010, 5 (12): e14218.
[11]GASPAR Y M, MCKENNA J A, MCGINNESS B S, et al. Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1[J]. Journal of Experimental Botany, 2014, 65(6): 1541-1550.
[12]WANG Y Q, LIANG C Z, Wu S J, et al. Significant improvement of cotton Verticillium Wilt resistance by manipulating the expression of Gastrodia antifungal proteins[J]. Molecular Plant, 2014, 9(10): 1436-1439.
[13]ZHANG Z Y, ZHAO J, DING L Y, et al. Constitutive expression of a novel antimicrobial protein, Hcm1, confers resistance to both Verticillium and Fusarium wilts in cotton[J]. Scientific Reports, 2016, 6: 20773.
[14]ZHANG J F, YU J W, PEI W F, et al. Genetic analysis of Verticillium wilt resistance in a backcross inbred line population and a meta-analysis of quantitative trait loci for disease resistance in cotton[J]. BMC Genomics, 2015, 16: 577.
[15]马存,简桂良,郑传临.中国棉花抗枯、黄萎病育种50年[J]. 中国农业科学, 2002, 35(5): 508-513.
[16]郭宝生,王凯辉,刘素恩,等. 陆地棉抗黄萎病种质创新与抗病基因挖掘[J].棉花学报, 2014, 26(3): 252-259.
[17]NING Z Y, ZHAO R, CHEN H, et al. Molecular tagging of a major Quantitative trait locus for broad-spectrum resistance to Verticillium Wilt in upland cotton cultivar Prema[J]. Crop Science, 2013, 53: 2304-2312.
[18]PATERSON A H, BRUBAKER C L, WENDEL J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis[J]. Plant Molecular Biology Reporter, 1993, 11(2): 122-127.
[19]张军,武耀庭,郭旺珍,等. 棉花微卫星标记的PAGE/银染快速检测[J]. 棉花学报, 2000, 12(5): 267-269.
[20]VAN O J, VOORRIPS R E. JoinMapR Version 3.0, software for the calculation of genetic linkage maps[M]. Wangeningen: Plant Research International, 2001.
[21]ZENG Z B. Precision mapping of quantitative trait loci[J]. Genetics, 1994, 136: 1457-1468.
[22]BASTEN C J, WEIR B S, ZENG Z B. QTL cartographer, version 1.15[M]. Raleigh North Carolina:Department of Statistics of North Carolina State University,2001.
[23]BRADBURY P, ZHANG Z, KROON D, et al. TASSEL: software for association mapping of complex traits in diverse samples [J]. Bioinformatics, 2007, 23: 2633.
[24]祁伟彦,张永军,张天真,等. 基于人工病圃筛选和分子标记辅助的棉花抗黄萎病育种方法研究与应用[J]. 分子植物育种, 2012, 10(5): 607-612.
[25]张华崇,张文蔚,简桂良,等. 中植棉2号抗黄萎病的主基因+多基因遗传特性分析[J]. 棉花学报, 2016, 28(5): 513-518.
[26]PALANGA K K, JAMSHED M, RASHID M H O, et al. Quantitative trait locus mapping for Verticillium Wilt resistance in an upland cotton recombinant inbred line using SNP-based high density genetic map[J]. Front Plant Sci, 2017, 8: 382.
[27]YANG C, GUO W Z, LI G Y, et al. QTLs mapping for Verticillium Wilt resistance at seedling and maturity stages in Gossypium barbadense L.[J]. Plant Science, 2008, 174(3): 290-298.
[28]刘剑光,吴巧娟,赵君,等. 陆地棉抗黄萎病QTL的定位[J]. 江苏农业学报, 2014, 30(6): 1235-1239.
[29]冯常辉,张胜昔,史认辉,等. 棉花抗黄萎病QTL定位研究进展[J]. 棉花学报, 2010, 22 (3): 273-278.

相似文献/References:

[1]赵亮,狄佳春,陈旭升.棉花基因组数据库中CPS&KS 基因的查找与分析[J].江苏农业学报,2016,(01):27.[doi:10.3969/j.issn.1000-4440.2016.01.004 ]
 ZHAO Liang,DI Jia-chun,CEHN Xu-sheng.Analysis of ent-copalyl diphosphate aynthase and ent-kaurene synthase (CPS&KS) gene family in cotton genome databases[J].,2016,(06):27.[doi:10.3969/j.issn.1000-4440.2016.01.004 ]
[2]赵君,刘剑光,吴巧娟,等.棉花种质种仁含油量测定及其遗传多样性分析[J].江苏农业学报,2015,(05):975.[doi:doi:10.3969/j.issn.1000-4440.2015.05.006]
 ZHAO Jun,LIU Jian-guang,WU Qiao-juan,et al.Kernel oil content and genetic diversity of upland cotton germplasm[J].,2015,(06):975.[doi:doi:10.3969/j.issn.1000-4440.2015.05.006]
[3]杨长琴,刘瑞显,张国伟,等.花铃期干旱对棉纤维素累积及纤维比强度的影响[J].江苏农业学报,2015,(06):1218.[doi:doi:10.3969/j.issn.1000-4440.2015.06.005]
 YANG Chang-qin,LIU Rui-xian,ZHANG Guo-wei,et al.Cellulose accumulation and fiber strength affected by drought during flowering and bolling stage in cotton[J].,2015,(06):1218.[doi:doi:10.3969/j.issn.1000-4440.2015.06.005]
[4]杨长琴,刘瑞显,张国伟,等.花铃期渍水对棉铃对位叶光合速率、物质累积及产量的影响[J].江苏农业学报,2015,(04):732.[doi:10.3969/j.issn.1000-4440.2015.04.004]
 YANG Chang-qin,LIU Rui-xian,ZHANG Guo-wei,et al.Photosynthesis of subtending leaves of bolls, dry matter accumulation and cotton yield in response to waterlogging during flowering and boll-forming stage[J].,2015,(06):732.[doi:10.3969/j.issn.1000-4440.2015.04.004]
[5]刘雅辉,王秀萍,鲁雪林,等.棉花耐盐相关序列扩增多态性(SRAP)分子标记筛选[J].江苏农业学报,2015,(03):484.[doi:10.3969/j.issn.1000-4440.2015.03.003]
 LIU Ya-hui,WANG Xiu-ping,LU Xue-lin,et al.Selection of sequence-related amplified polymorphism molecular marker associated with salt tolerance of cotton[J].,2015,(06):484.[doi:10.3969/j.issn.1000-4440.2015.03.003]
[6]王为,叶泗洪,潘宗瑾,等.棉花分子标记冗余性检测与评价的方法[J].江苏农业学报,2015,(02):247.[doi:10.3969/j.issn.1000-4440.2015.02.004]
 WANG Wei,YE Si-hong,PAN Zong-jin,et al.An approach to detecting and evaluating molecular marker redundancy in cotton[J].,2015,(06):247.[doi:10.3969/j.issn.1000-4440.2015.02.004]
[7]郭琪,徐珍珍,黄芳,等.棉花HKT基因家族的全基因组分析[J].江苏农业学报,2017,(05):975.[doi:doi:10.3969/j.issn.1000-4440.2017.05.003]
 GUO Qi,XU Zhen-zhen,HUANG Fang,et al.Genome-wide analysis of high-affinity potassium transporter gene family in cotton[J].,2017,(06):975.[doi:doi:10.3969/j.issn.1000-4440.2017.05.003]
[8]黄芳,徐珍珍,孟珊,等.盐胁迫下棉花LTR-反转座子的转录激活及在耐盐相关基因发掘中的应用[J].江苏农业学报,2017,(06):1220.[doi:doi:10.3969/j.issn.1000-4440.2017.06.004]
 HUANG Fang,XU Zhen-zhen,MENG Shan,et al.The identification of long terminal repeat retrotransposons (LTR-RTs) with transcription activity under salt stress and its application in screening the candidate genes related to salt-tolerant in cotton[J].,2017,(06):1220.[doi:doi:10.3969/j.issn.1000-4440.2017.06.004]
[9]徐剑文,孔杰,赵君,等.盐胁迫下棉花萌发、成苗和产量相关性状的QTL定位[J].江苏农业学报,2018,(05):972.[doi:doi:10.3969/j.issn.1000-4440.2018.05.002]
 XU Jian-wen,KONG-Jie,ZHAO Jun,et al.Identification of QTLs conferring the traits related to germination, seedling survival and production of cotton under salt stress[J].,2018,(06):972.[doi:doi:10.3969/j.issn.1000-4440.2018.05.002]
[10]韦陈华,邓国强,颜超,等.高密度重化控技术对小麦后直播棉花成铃时空分布的调控[J].江苏农业学报,2018,(05):1022.[doi:doi:10.3969/j.issn.1000-4440.2018.05.008]
 WEI Chen-hua,DENG Guo-qiang,YAN Chao,et al.Impact of high planting density with heavy chemical regulation technique on boll spatio-temporal distribution of cotton under direct seeding modes after wheat harvested[J].,2018,(06):1022.[doi:doi:10.3969/j.issn.1000-4440.2018.05.008]

备注/Memo

备注/Memo:
收稿日期:2018-07-08 基金项目:国家自然科学基金项目(31401727); 国家重点研发计划项目(2016YFD0100203);转基因生物新品种培育科技重大专项(2016ZX08005001);江苏省重点研发计划项目(BE2015353);江苏省自然科学基金项目(BK20170597) 作者简介:赵君(1982-),男,山西朔州人,博士,副研究员,研究方向为棉花种质创新与分子育种。(Tel)025-84390363;(E-mail)sxzhaojun88@aliyun.com 通讯作者:肖松华,(Tel)025-84390363;(E-mail)njxsh@sina.com
更新日期/Last Update: 2018-12-28