[1]肇思迪,娄运生,庞渤,等.UV-B辐射增强下施硅对冬小麦光合特性和产量的影响[J].江苏农业学报,2017,(05):1036-1043.[doi:doi:10.3969/j.issn.1000-4440.2017.05.012]
 ZHAO Si-di,LOU Yun-sheng,PANG Bo,et al.Effects of silicate application on photosynthesis and yield in winter wheat under elevated UV-B radiation[J].,2017,(05):1036-1043.[doi:doi:10.3969/j.issn.1000-4440.2017.05.012]
点击复制

UV-B辐射增强下施硅对冬小麦光合特性和产量的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年05期
页码:
1036-1043
栏目:
耕作栽培·资源环境
出版日期:
2017-10-30

文章信息/Info

Title:
Effects of silicate application on photosynthesis and yield in winter wheat under elevated UV-B radiation
作者:
肇思迪12娄运生1庞渤2朱怀卫1张祎玮1石一凡1
(1.南京信息工程大学气象灾害预报预警与评估协同创新中心/江苏省农业气象重点实验室,江苏南京210044;2.庄河市气象局,辽宁庄河116400)
Author(s):
ZHAO Si-di12LOU Yun-sheng1PANG Bo2ZHU Huai-wei1ZHANG Yi-wei1SHI Yi-fan1
(1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing 210044, China;2.Zhuanghe Meteorological Bureau, Zhuanghe 116400,China)
关键词:
UV-B辐射增强施硅冬小麦光合作用蒸腾作用
Keywords:
elevated UV-B radiationsilicate applicationwinter wheatphotosynthesistranspiration
分类号:
S512.1+1
DOI:
doi:10.3969/j.issn.1000-4440.2017.05.012
文献标志码:
A
摘要:
通过大田试验,研究UV-B增强下施硅对冬小麦光合和蒸腾生理相关参数以及产量的影响。UV-B辐射设2水平,即对照(A,自然光)和增强20%(E);施硅量设2水平,即对照(Si0,0 kg/hm2 SiO2)和施硅(Si1,200 kg/hm2 SiO2)。结果表明,不施硅条件下(Si0),UV-B辐射处理(E)的不同生育期小麦净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)和蒸腾速率(Tr)比对照处理(A)分别降低 9.21%~1894%、7.56%~2366%、1.24%~1281%和13.88%~2785%,提高气孔限制值(Ls)和水分利用率(WUE) 5.07%~1967%和2.35%~2786%,小麦产量降低908%;UV-B增强下(E),施硅处理(Si1)的不同生育期小麦净光合速率(Pn)、气孔限制值(Ls)和水分利用率(WUE)比不施硅对照(Si0)分别提高 5.23%~1223%、4.61%~4532%和 18.15%~6133%,气孔导度(Gs)、胞间CO2浓度(Ci)和蒸腾速率(Tr)分别降低 6.35%~1094%、5.41%~1101%和6.75%~3051%,小麦产量增加483%。说明UV-B增强可显著降低冬小麦叶片的净光合速率和蒸腾速率,提高水分利用率,降低冬小麦产量,而施硅可缓解UV-B辐射对冬小麦光合作用的抑制,降低蒸腾速率和提高水分利用率,使小麦不减产。
Abstract:
A field experiment was conducted to investigate the effects of silicate application on photosynthesis, transpiration and yield in winter wheat under elevated UV-B radiation. The experiment had two UV-B radiation levels, ambient UV-B (A, ambient) and elevated UV-B radiation (E, elevated by 20%); and two silicate application levels, a control (Si0, 0 kg/hm2, SiO2) and added silicate (Si1, 200 kg/hm2, SiO2). The results indicated that, compared with the group of ambient UV-B radiation in the treatment of no silicate application, the net photosynthesis rate (Pn), stomatal conductivity (Gs), intercellular CO2 concentration (Ci) and transpiration rate (Tr) of wheat at different stages in the group of elevated UV-B radiation decreased by 9.21%-18.94%, 7.56%-23.66%, 1.24%-12.81% and 13.88%-27.85%, respectively, and stomatal limitation (Ls) and water use efficiency (WUE) increased by 5.07%-19.67% and 2.35%-27.86%, wheat yield decreased by 9.08%. Under elevated UV-B radiation, the treatment of silicate application significantly increased Pn, Ls and WUE of wheat at different stages by 5.23%-12.23%, 4.61%-45.32% and 18.15%-61.33%, respectively, decreased Gs, Ci and Tr by 6.35%-10.94%, 5.41%-11.01% and 6.75%-30.51%, increased wheat yield by 4.83%. In conclusion, the treatment of elevated UV-B radiation significantly decreased the Pn and Tr, increased WUE in winter wheat leaves, and decreased wheat yield. However, the treatment of silicate application could alleviate the inhibitory effect of elevated UV-B radiation on Pn, decrease Tr and WUE, and increase the yield of wheat.

参考文献/References:

[1]THE SCIENTIFIC ASSESSMENT PANELF THE MONTREAL PROTOCOL ON SUBSTANCES THAT DEPLETE THE OZONE LAYER. Final of UNEP/WMO scientific assessment of ozone depletion[R]. Nairobi, UNEP: 2002.
[2]MADRONICH S,MC KENZIE R L, BJRN L O,et al. Changes in biologically-active ultraviolet radiation reaching the Earth’s surface[J]. Journal of Photochemistry and Photobiology B: Biology,1998,46(1-3): 5-19.
[3]MOHAMMED A R, TARPLEY L. Morphological and physiological responses of nine southern U.S.rice cultivars differing in their tolerance to enhanced ultraviolet-B radiation[J]. Environmental and Experimental Botany, 2011, 70: 174-184.
[4]王伟,王岩,梁变变,等. 初花期喷镧对UV-B辐射增强下紫花苜蓿光合及荧光特性的影响[J]. 中国农业气象,2017,38(4):230-239.
[5]李俊,杨玉皎,王文丽,等. UV-B辐射增强对马铃薯叶片结构及光合参数的影响[J]. 生态学报,2017,8(16):1-14.
[6]韩艳,韩晨光,崔荣华,等. 外源水杨酸对UV-B增强下花生叶片光合特性的影响[J]. 中国农业气象,2016,37(4):437-444.
[7]张令瑄,谢婷婷,王瑾,等. 大田条件下UV-B辐射增强对大豆根际土壤相关指标的影响[J]. 江苏农业学报,2016,32(1):118-122.
[8]MOHAMMED A R, ROUNDS E W, TARPLEY L. Response of rice (Oryza sativa L.) tillering to sub-ambient levels of ultraviolet-B radiation[J]. Journal of Agronomy and Crop Science, 2007, 193(5): 324-335.
[9]FENG H, AN L, CHEN T, et al. The effect of enhanced ultraviolet-B radiation on growth, photosynthesis and stable carbon isotope composition (δ 13 C) of two soybean cultivars ( Glycine max ) under field conditions[J]. Environmental & Experimental Botany, 2003, 49(1):1-8.
[10]祁虹,段留生,王树林,等. 全生育期UV-B辐射增强对棉花生长及光合作用的影响[J]. 中国生态农业学报,2017,25(5):708-719.
[11]吕志伟,张令瑄,王瑾,等. 田间条件下UV-B辐射增强对大豆生长及光合特性的影响[J]. 河南农业科学,2016,45(1):42-45.
[12]贾国涛,顾会战,许自成,等. 作物硅素营养研究进展[J]. 山东农业科学,2016,48(5):153-158.
[13]KANG J, ZHAO W, ZHU X. Silicon improves photosynthesis and strengthens enzyme activities in the C3 succulent xerophyte Zygophyllumxanthoxylum under drought stress[J]. Journal of Plant Physiology, 2016, 199:76-86.
[14]华海霞. 4种植物对硅的吸收动力学[J]. 江苏农业科学,2015,43(11):440-442.
[15]刘景凯,刘世琦,冯磊,等. 硅对青蒜苗生长、光合特性及品质的影响[J]. 植物营养与肥料学报,2014,20(4):989-997.
[16]张国芹,牟建梅,何玲莉,等. 氮硅配施对不结球白菜养分吸收及产量和品质的影响[J]. 江苏农业学报,2016,32(5):1128-1133.
[17]TAMAI K, MA J F. Reexamination of silicon effects on rice growth and production under field conditions using a low silicon mutant[J]. Plant and Soil, 2008, 307(1/2): 21-27.
[18]柯用春,曹明,杨小锋,等. 喷施不同浓度有机硅肥对热带地区甜瓜产量和品质的影响[J]. 南方农业学报,2015,46(1):53-57.
[19]于立河,高聚林. 硅对小麦产量与籽粒品质的影响[J]. 麦类作物学报,2012,32(3):469-473.
[20]张黛静,马建辉,杨淑芳,等. 硅对铜胁迫下小麦幼根细胞超微结构的影响[J]. 应用生态学报, 2014,25(8):2385-2389.
[21]李冬香,李光德,张华,等. 硅作用下镉对小麦幼苗生理生化指标的影响研究[J]. 中国农学通报,2013,44(36):84-90.
[22]宁东峰,梁永超. 硅调节植物抗病性的机理:进展与展望[J]. 植物营养与肥料学报,2014,20(5):1280-1287.
[23]BALAKHNINA T, BORKOWSKA A. Effects of silicon on plant resistance to environmental stresses: review[J]. International Agrophysics, 2013, 27(2):225-232.
[24]王龙俊,陈荣振,朱新开,等. 江苏省小麦品质区划研究初报[J]. 江苏农业科学,2002(2):15-18.
[25]蔡锡安,夏汉平,彭少麟. 增强UV-B辐射对植物的影响[J]. 生态环境, 2007(3):1044-1052.
[26]FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33: 317-345.
[27]娄运生,黄岩,李永秀,等. UV-B辐射增强对不同大麦品种生理特性的影响[J]. 生态与农村环境学报, 2011,27(4): 51-55.
[28]郑有飞,徐卫民,吴荣军,等. 地表臭氧浓度增加和UV-B辐射增强及其复合处理对大豆光合特性的影响[J]. 生态学报, 2012, 32(8): 2515-2524.
[29]郑有飞,张金恩,吴荣军,等. UV-B辐射增强与O3胁迫对冬小麦光合特征的影响[J]. 环境科学, 2011, 32(10): 3023-3032.
[30]张莉娜,安黎哲,冯虎元. 增强UV-B辐射和干旱对春小麦光合作用及其生长的影响[J]. 西北植物学报, 2010, 30(5): 981-986.
[31]LI W B, SHI X H, WANG H, et al. Effects of silicon on rice leaves resistance to ultraviolet-B[J]. Acta Bot Sin, 2004, 46(6): 691-697.
[32]高玉凤,焦峰,沈巧梅. 水稻硅营养与硅肥应用效果研究进展[J]. 中国农学通报, 2009, 25(16): 156-160.
[33]陈明灿,王贺正,姚孚荣,等. 硅对小麦幼苗生长及部分生理指标的影响[J]. 广东农业科学, 2014,41( 21):7-10.
[34]吴蕾,娄运生,孟艳,等. UV-B增强下施硅对水稻抽穗期生理特性日变化的影响[J]. 应用生态学报,2015,26(1):32-38.
[35]娄运生,韩艳,刘朝阳,等. UV-B增强下施硅对大麦抽穗期光合和蒸腾生理日变化的影响[J]. 中国农业气象, 2013,34(6): 668-672.
[36]苗秀莲,刘传栋,郭彦,等. UV-B辐射增强及CO2浓度升高对水稻产量及品质的影响[J]. 作物杂志,2015(1):138-142.
[37]丁燕芳,梁永超,朱佳,等. 硅对干旱胁迫下小麦幼苗生长及光合参数的影响[J]. 植物营养与肥料学报, 2007, 13(3): 471-478.
[38]宫海军,陈坤明,陈国仓,等. 硅对小麦生长及其抗氧化酶系统的影响[J]. 土壤通报, 2003,34(1): 55-57.
[39]郭彬,娄运生,梁永超,等. 氮硅肥配施对水稻生长、产量及土壤肥力的影响[J]. 生态学杂志, 2004, 23(6): 33-36.

备注/Memo

备注/Memo:
收稿日期:2017-02-27 基金项目:国家自然科学基金(41375159);江苏省自然科学基金(BK20131430) 作者简介:肇思迪(1992-),女,辽宁沈阳人,硕士研究生,主要从事农业气象研究。(E-mail)575562551@qq.com 通讯作者:娄运生,(E-mail)yunshlou@163.com
更新日期/Last Update: 2017-11-03