[1]李新程,孟令鑫,吴京静,等.生物炭配施木霉菌剂对大豆根际土壤养分含量、酶活性及大豆农艺性状的影响[J].江苏农业学报,2025,(06):1136-1146.[doi:doi:10.3969/j.issn.1000-4440.2025.06.010]
 LI Xincheng,MENG Lingxin,WU Jingjing,et al.Effects of biochar combined with Trichoderma inoculants on nutrient content, enzyme activity in soybean rhizosphere soil, and soybean agronomic traits[J].,2025,(06):1136-1146.[doi:doi:10.3969/j.issn.1000-4440.2025.06.010]
点击复制

生物炭配施木霉菌剂对大豆根际土壤养分含量、酶活性及大豆农艺性状的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年06期
页码:
1136-1146
栏目:
耕作栽培·资源环境
出版日期:
2025-06-30

文章信息/Info

Title:
Effects of biochar combined with Trichoderma inoculants on nutrient content, enzyme activity in soybean rhizosphere soil, and soybean agronomic traits
作者:
李新程孟令鑫吴京静常洪艳赵政王呈玉刘淑霞
(吉林农业大学资源与环境学院/吉林省商品粮基地土壤资源可持续利用重点实验室,吉林长春130118)
Author(s):
LI XinchengMENG LingxinWU JingjingCHANG HongyanZHAO ZhengWANG ChengyuLIU Shuxia
(College of Resources and Environment, Jilin Agricultural University/Key Laboratory of Sustainable Utilization of Soil Resources in Jilin Province Commodity Grain Bases, Changchun 130118, China)
关键词:
大豆连作障碍生物炭木霉菌剂土壤养分土壤酶活性农艺性状
Keywords:
soybeancontinuous cropping obstaclesbiocharTrichoderma inoculantsoil nutrientssoil enzyme activityagronomic traits
分类号:
S565.1
DOI:
doi:10.3969/j.issn.1000-4440.2025.06.010
文献标志码:
A
摘要:
大豆连作种植模式会导致土壤理化性质恶化和土壤酶活性降低,为缓解连作障碍,促进大豆高产,本研究在土壤中施用生物炭和木霉菌剂,并探究其对大豆根际土壤养分、酶活性及大豆农艺性状的影响。研究结果表明,生物炭配施哈茨木霉(Trichoderma harzianum)菌剂处理和生物炭配施绿色木霉(Trichoderma viride)菌剂处理显著提高了根际土壤速效钾、碱解氮、速效磷含量及脲酶、蔗糖酶、过氧化氢酶、酸性磷酸酶活性,其对土壤的改良效果和对大豆的促生效果总体上优于单一施用生物炭处理、哈茨木霉菌剂处理、绿色木霉菌剂处理。冗余分析和相关性分析结果表明,速效钾含量、碱解氮含量、脲酶活性、蔗糖酶活性和过氧化氢酶活性与大豆农艺性状呈显著正相关,是影响大豆农艺性状的关键土壤因子。本研究结果为改良连作土壤、提升大豆生产力提供了一种生态调控措施。
Abstract:
The continuous cropping pattern of soybeans can lead to the deterioration of soil physical and chemical properties and a decrease in soil enzyme activity. To alleviate the continuous cropping obstacle and enhance soybean productivity, in this study, biochar and Trichoderma inoculants were applied to the soil, and the effects on the nutrients and enzyme activities of soybean rhizosphere soil as well as the agronomic traits of soybeans were explored. The research results showed that the treatment of biochar combined with the Trichoderma harzianum inoculant and the treatment of biochar combined with the Trichoderma viride inoculant significantly increased the contents of available potassium, alkali-hydrolyzable nitrogen and available phosphorus in the rhizosphere soil, as well as the activities of urease, sucrase, catalase and acid phosphatase. Their effects on soil improvement and the promotion of soybean growth were generally better than those of the treatments of applying biochar alone, applying the Trichoderma harzianum inoculant alone, and applying the Trichoderma viride inoculant alone. The results of redundancy analysis and correlation analysis revealed that the contents of available potassium and alkali-hydrolyzable nitrogen, as well as the activities of urease, sucrase, and catalase, were significantly positively correlated with the agronomic traits of soybeans, and they were the key soil factors affecting the agronomic traits of soybeans. This study provides an ecological regulation measure for improving continuously cropped soil and enhancing soybean productivity.

参考文献/References:

[1]薛庆喜. 中国及东北三省30年大豆种植面积、总产、单产变化分析[J]. 中国农学通报,2013,29(35):102-106.
[2]张胜男,武美华,逄玉万,等. 连作障碍土壤改良措施研究进展[J]. 热带农业科学,2024,44(1):96-102.
[3]张武,杨树,项鹏,等. 哈茨木霉拌种对大豆生长及大豆根腐病的影响[J]. 黑龙江农业科学,2023(7):41-46.
[4]刘株秀. 东北黑土区大豆连作土壤微生物群落变化的分子解析[D]. 北京:中国科学院大学(中国科学院东北地理与农业生态研究所),2020.
[5]王建武,武丹丹,相微微. 复合微生物菌剂对玉米根际土壤养分和酶活性的影响[J]. 榆林学院学报,2025,35(2):46-51.
[6]ZIN N A, BADALUDDIN N A. Biological functions of Trichoderma spp. for agriculture applications[J]. Annals of Agricultural Sciences,2020,65(2):168-178.
[7]SOOD M, KAPOOR D, KUMAR V, et al. Trichoderma:the "secrets" of a multitalented biocontrol agent[J]. Plants (Basel),2020,9(6):762.
[8]孙成成,丁伟,潘兴兵,等. 影响微生物菌剂应用稳定性的因素分析[J]. 植物医生,2019,32(4):19-23.
[9]LI Q L, FU Q, LI T X, et al. Biochar impacts on the soil environment of soybean root systems[J]. Science of the Total Environment,2022,821:153421.
[10]杨瑞先,刘萍,刘长营,等. 牡丹连作障碍成因及防治措施研究进展[J]. 北方园艺,2024(14):129-135.
[11]鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社,2000.
[12]关松荫. 土壤酶及其研究法[M]. 北京:农业出版社,1986.
[13]田胜营,潘明泉,吕秀敏,等. 有机无机肥配施对土壤性质和小麦生长、养分吸收利用的影响[J]. 江苏农业科学,2023,51(23):102-107.
[14]张健利,王振华,刘茹华,等. 水肥互作对滴灌红枣耗水及产量的影响[J]. 排灌机械工程学报,2023,41(6):597-604,613.
[15]余高,陈芬,卢心,等. 不同施肥对幼龄柑橘园土壤养分及酶活性变化的影响[J]. 江苏农业科学,2023,51(20):218-223.
[16]陈慧,王改萍,彭方仁,等. 薄壳山核桃-油用牡丹多种种植模式下土壤质量评价[J]. 南京林业大学学报(自然科学版),2024,48(4):177-183.
[17]范秉元. 长期有机肥与无机肥配施对马铃薯-玉米田土壤养分、碳组分、微生物区系及作物产量的影响[J]. 江苏农业科学,2023,51(11):233-240.
[18]李奕含,周蓓蓓,任培琦,等. 水肥调控模式对滨海盐碱地水肥盐迁移及春玉米水肥利用率的影响[J]. 排灌机械工程学报,2023,41(1):80-88.
[19]危潇,曹春霞,黄大野,等. 木霉菌生防作用机制及协同防病的研究进展[J]. 中国农业科技导报,2024,26(11):126-135.
[20]LAMMIRATO C, MILTNER A, KAESTNER M. Effects of wood char and activated carbon on the hydrolysis of cellobiose by β-glucosidase from Aspergillus niger[J]. Soil Biology and Biochemistry,2011,43(9):1936-1942.
[21]SANI M N H, HASAN M, UDDAIN J, et al. Impact of application of Trichoderma and biochar on growth, productivity and nutritional quality of tomato under reduced N-P-K fertilization[J]. Annals of Agricultural Sciences,2020,65(1):107-115.
[22]李静. 生物炭基人工湿地强化脱氮研究[D]. 济南:山东大学,2019.
[23]赵欣,王怡霏,王嘉嘉,等. 木霉菌对作物及土壤生态环境的影响[J]. 中国农业科技导报,2023,25(11):166-172.
[24]彭艳,江燕,刘代铃,等. 有机质和微生物菌剂对苦荞连作农艺性状及土壤酶活性的影响[J]. 分子植物育种,2023,21(4):1287-1293.
[25]马书琴,汪子微,陈有超,等. 藏北高寒草地土壤有机质化学组成对土壤蛋白酶和脲酶活性的影响[J]. 植物生态学报,2021,45(5):516-527.
[26]王萌,乔赫梁,姚云平,等. 贝莱斯芽孢杆菌QL-2对连作花生土壤肥力和微生物群落的影响[J]. 中国土壤与肥料,2024(6):168-177.
[27]蒋敏敏. 解淀粉芽孢杆菌菌剂对烟草农艺性状及烟田土壤性状的影响[D]. 泰安:山东农业大学,2024.
[28]高转琴,王丹,牛灵安,等. 冀南平原盐渍化改造区土壤过氧化氢酶活性变化研究[J]. 土壤通报,2019,50(6):1434-1441.
[29]杨淑娜,高志远,奚昕琰,等. 芽孢杆菌菌肥和菌剂对连作条件下桃幼树生长和土壤环境的影响[J]. 应用生态学报,2022,33(2):423-430.
[30]谢洪宝,于贺,陈一民,等. 秸秆深埋对不同氮肥水平土壤蔗糖酶活性的影响[J]. 中国农学通报,2021,37(24):79-83.
[31]郑钰铟,胡素萍,陈辉,等. 油茶饼粕生物炭和有机肥对土壤酶活性的影响[J]. 森林与环境学报,2018,38(3):348-354.
[32]MAO T T, JIANG X L. Changes in microbial community and enzyme activity in soil under continuous pepper cropping in response to Trichoderma hamatum MHT1134 application[J]. Scuientific Reports,2021,11(1):12.
[33]LIU L, XU Y S, CAO H L, et al. Effects of Trichoderma harzianum biofertilizer on growth,yield,and quality of Bupleurum chinense[J]. Plant Direct,2022,6(11):e461.
[34]王文慧,蒋志慧,张纪,等. 生物炭对大豆根际土壤酶活性及产量的影响[J]. 中国土壤与肥料,2023(6):147-153.
[35]高文慧,郭宗昊,薛晨,等. 生物炭及炭基肥对大豆土壤酶活性的影响[J]. 淮北师范大学学报(自然科学版),2020,41(1):48-53.
[36]张萱,杨玉莹,王花,等. 微生物菌剂对黄瓜幼苗生长及基质理化环境的影响[J]. 西北农林科技大学学报(自然科学版),2025,53(3):49-61.
[37]杨杉杉,李国光,张胜男,等. 假单胞菌BP16的分离鉴定及其植物促生性状和效应[J]. 微生物学通报,2018,45(10):2121-2130.
[38]王丽丽,朱诗君,狄蕊,等. 微生物菌肥菌剂对番茄生长发育和产量品质的影响[J]. 土壤与作物,2022,11(1):88-95.

相似文献/References:

[1]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
 LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(06):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[2]张令瑄,谢婷婷,王瑾,等.大田条件下UV-B 辐射增强对大豆根际土壤相关指标的影响[J].江苏农业学报,2016,(01):118.[doi:10.3969/j.issn.1000-4440.2016.01.018]
 ZHANG Ling-xuan,XIE Ting-ting,WANG Jin,et al.Soybean rhizosphere soil parameters in response to enhanced UV-B radiation under field condition[J].,2016,(06):118.[doi:10.3969/j.issn.1000-4440.2016.01.018]
[3]周开胜.厌氧还原土壤灭菌法抑制西瓜专化型尖孢镰刀菌[J].江苏农业学报,2015,(05):1006.[doi:doi:10.3969/j.issn.1000-4440.2015.05.010]
 ZHOU Kai-sheng.Anaerobic soil disinfestation, an effective way to control watermelon fusarium wilt caused by Fusarium oxysporum f. sp. niveum[J].,2015,(06):1006.[doi:doi:10.3969/j.issn.1000-4440.2015.05.010]
[4]宁丽华,何晓兰,张大勇.大豆耐盐相关基因GmNcl1功能标记的开发及验证[J].江苏农业学报,2017,(06):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
 NING Li-hua,HE Xiao-lan,ZHANG Da-yong.Development and validation of the function marker of soybean salt tolerance gene GmNcl1[J].,2017,(06):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
[5]刘勇,刘燕,胡茂飞,等.头花蓼水浸提液的化感自毒作用[J].江苏农业学报,2018,(03):520.[doi:doi:10.3969/j.issn.1000-4440.2018.03.006]
 LIU Yong,LIU Yan,HU Mao-fei,et al.Research on allelopathic autotoxicity of water extracts of Polygonum capitatum[J].,2018,(06):520.[doi:doi:10.3969/j.issn.1000-4440.2018.03.006]
[6]杨艳丽,杨勇,李大红,等.转桃PpCuZnSOD基因大豆的耐旱性[J].江苏农业学报,2018,(05):978.[doi:doi:10.3969/j.issn.1000-4440.2018.05.003]
 YANG Yan-li,YANG Yong,LI Da-hong,et al.Drought tolerance of transgenic soybean with PpCuZnSOD gene[J].,2018,(06):978.[doi:doi:10.3969/j.issn.1000-4440.2018.05.003]
[7]孙彦坤,陈睿,李静,等.不同降雨年型下反枝苋和大豆光合特征的比较[J].江苏农业学报,2019,(03):554.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
 SUN Yan-kun,CHEN Rui,LI Jing,et al.Comparison of photosynthetic characteristics between Amaranthus retroexus and Glycine max under different annual rainfall pattern[J].,2019,(06):554.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
[8]曹媛媛,陈春,郭婷婷,等.亲和性促生菌DW12-L的定殖及其对大豆生长的影响[J].江苏农业学报,2019,(04):776.[doi:doi:10.3969/j.issn.1000-4440.2019.04.004]
 CAO Yuan yuan,CHEN Chun,GUO Ting ting,et al.Colonization of soybean affinity rhizobacteria strain DW12-L and its effects on soybean growth[J].,2019,(06):776.[doi:doi:10.3969/j.issn.1000-4440.2019.04.004]
[9]丁俊男,于少鹏,李鑫,等.生物炭对大豆生理指标和农艺性状的影响[J].江苏农业学报,2019,(04):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
 DING Jun nan,YU Shao peng,LI Xin,et al.Effects of biochar application on soybean physiological indices and agronomic traits[J].,2019,(06):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
[10]徐彬,徐健,祁建杭,等.江苏省设施蔬菜连作障碍土壤理化及生物特征[J].江苏农业学报,2019,(05):1124.[doi:doi:10.3969/j.issn.1000-4440.2019.05.018]
 XU Bin,XU Jian,QI Jian-hang,et al.Soil physical, chemical and biological characteristic analysis of long-term vegetable monoculture in greenhouse in Jiangsu province[J].,2019,(06):1124.[doi:doi:10.3969/j.issn.1000-4440.2019.05.018]

备注/Memo

备注/Memo:
收稿日期:2024-11-09基金项目:吉林省科技发展计划项目(20210202015NC)作者简介:李新程(2000-),男,新疆伊犁人,硕士研究生,研究方向为微生物资源开发利用。(E-mail)18040723100@163.com通讯作者:王呈玉,(E-mail)chengyuw@jlau.edu.cn
更新日期/Last Update: 2025-07-16