参考文献/References:
[1]马代夫,刘庆昌,张立明. 中国甘薯[M]. 南京:江苏凤凰科学技术出版社,2021.
[2]KWAK S S. Biotechnology of the sweetpotato:ensuring global food and nutrition security in the face of climate change[J]. Plant Cell Reports,2019,38(11):1361-1363.
[3]KATAYAMA K, KOBAYASHI A, SAKAI T, et al. Recent progress in sweetpotato breeding and cultivars for diverse applications in Japan[J]. Breeding Science,2017,67(1):3-14.
[4]SHIH C K, CHEN C M, HSIAO T J, et al. White sweet potato as meal replacement for overweight white-collar workers:a randomized controlled trial[J]. Nutrients,2019,11(1):165.
[5]HERAWATI E R N, SANTOSA U, SENTANA S, et al. Protective effects of anthocyanin extract from purple sweet potato (Ipomoea batatas L.) on blood MDA levels,liver and renal activity,and blood pressure of hyperglycemic rats[J]. Preventive Nutrition and Food Science,2020,25(4):375-379.
[6]LAMARO G P, TSEHAYE Y, GIRMA A, et al. Evaluation of yield and nutraceutical traits of orange-fleshed sweet potato storage roots in two agro-climatic zones of northern Ethiopia[J]. Plants,2023,12(6):1319.
[7]SUN H N, MU T H, XI L S, et al. Sweet potato (Ipomoea batatas L.) leaves as nutritional and functional foods[J]. Food Chemistry,2014,156:380-389.
[8]HALSTED B D. Some fungous diseases of the sweet potato. The black rot[J]. New Jersey Agricultural Experiment Station Bulletin,1890,76:7-14.
[9]谢逸萍. 甘薯根腐病抗病性室内鉴定方法的研究[J]. 植物保护,1999,25(6):7-9.
[10]MA J K, CHEN J W, ZHANG C L, et al. Development and characterisation of SSR markers in the potato rot nematode Ditylenchus destructor[J]. Nematology, 2022, 24: 959-969.
[11]刘中华,余华,邱思鑫,等. 蔓割病不同抗性甘薯品种的茎部细胞结构观察[J]. 植物遗传资源学报,2015,16(3):541-548.
[12]袁照年,陈凤翔,陈选阳,等. 甘薯抗薯瘟病的遗传及其与产量性状的关系[J]. 福建农业大学学报,1999,28(4):413-416.
[13]张新新,陈景益,房伯平,等. 广东省甘薯疮痂病病原菌鉴定及国内主要菜用甘薯种质抗性评价[J]. 植物保护学报,2021,48(2):298-304.
[14]谢逸萍,孙厚俊,邢继英. 中国各大薯区甘薯病虫害分布及危害程度研究[J]. 江西农业学报,2009,21(8):121-122.
[15]谢昀烨,王会福,应俊杰,等. 浙江甘薯蔓枯病病原菌鉴定[J]. 植物病理学报,2021,51(3):441-445.
[16]张莉丽,王丽,谢关林,等. 甘薯茎腐病田间症状识别与快速镜检诊断研究[J]. 农学学报,2023,13(6):32-38.
[17]赵永强,徐振,杨冬静,等. 甘薯黑痣病菌的生物学特性研究[J]. 北方农业学报,2018,46(5):89-92.
[18]高波,王容燕,马娟,等. 甘薯爪哇黑腐病的病原鉴定[J]. 植物保护,2016,42(5):200-204,209.
[19]黄立飞,罗忠霞,房伯平,等. 甘薯白绢病病原菌的鉴定[J]. 植物保护学报,2013,40(6):569-570.
[20]高波,马娟,王容燕.甘薯象耳豆根结线虫的初报[C]// 中国植物病理学会.第十四届全国植物线虫学学术研讨会论文集. 保定:中国植物病理学会,2018.
[21]王海荣,段长勇,黄千千,等. 甘薯病毒种类及甘薯抗病毒策略研究进展[J]. 河南科技学院学报(自然科学版),2023,51(5):1-7,15.
[22]王庆美,王荫墀,王建军,等. 甘薯病毒病研究进展[J]. 山东农业科学,1994,26(4):36-39.
[23]YANG Y H, CHEN Y Q, BO Y X, et al. Research progress in the mechanisms of resistance to biotic stress in sweet potato[J]. Genes,2023,14(11):2106.
[24]陈观水. 甘薯抗病相关基因的克隆与分析[D]. 福州:福建农林大学,2007.
[25]林巧玲,曾会才. 甘薯中NBS-LRR类抗病基因同源序列的克隆及序列分析[J]. 西北农业学报,2007,16(2):65-69.
[26]王钰,王荣富,何国浩. 甘薯抗病基因同源序列的克隆与分析[J]. 南京农业大学学报,2008,31(3):81-86.
[27]KIM Y H, JEONG J C, PARK S, et al. Molecular characterization of two ethylene response factor genes in sweetpotato that respond to stress and activate the expression of defense genes in tobacco leaves[J]. Journal of Plant Physiology,2012,169(11):1112-1120.
[28]王连军,贾礼聪,苏文瑾,等. 甘薯近缘野生种抗病基因同源序列的分离与鉴定[J]. 湖北农业科学,2013,52(11):2680-2683.
[29]王崇,王连军,雷剑,等. 甘薯抗病相关基因TAO1-like的TRAP分析[J]. 湖北农业科学,2019,58(18):152-155.
[30]黄小芳,毕楚韵,石媛媛,等. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报,2020,46(8):1195-1207.
[31]毕楚韵,黄小芳,周丽香,等. 三浅裂野牵牛NBS-LRR类抗病基因的鉴定和分析[J]. 分子植物育种,2021,19(9):2826-2836.
[32]陆漱韵,刘庆昌,李惟基. 甘薯育种学[M]. 北京:中国农业出版社,1998:286-289.
[33]MURAMOTO N, TANAKA T, SHIMAMURA T, et al. Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storage roots[J]. Plant Cell Reports,2012,31(6):987-997.
[34]杨冬静,马居奎,唐伟,等. 甘薯块根响应长喙壳菌(Ceratocystis fimbriata)侵染的转录组测序分析[J]. 江西农业学报,2022,34(7):60-69.
[35]YANG D J, BIAN X F, KIM H S, et al. IbINV positively regulates resistance to black rot disease caused by Ceratocystis fimbriata in sweet potato[J]. International Journal of Molecular Sciences,2023,24(22):16454.
[36]吴茜,宫颖,邓黄玥,等. 甘薯几丁质酶基因IbChiA启动子的克隆及功能分析[J]. 分子植物育种,2022,20(3):742-749.
[37]方树民,陈玉森,朱伯昌,等. 药剂浸苗处理防治甘薯蔓割病的试验[J]. 福建农业大学学报,1995,24(4):420-425.
[38]TAO L, ZHAO Y, WU Y, et al. Transcriptome profiling and digital gene expression by deep sequencing in early somatic embryogenesis of endangered medicinal Eleutherococcus senticosus Maxim[J]. Gene,2016,578(1):17-24.
[39]刘中华,林志坚,李华伟,等. 甘薯蔓割病抗性相关SRAP标记的获得[J]. 福建农业学报,2017,32(6):639-644.
[40]ONOFUA D. 甘薯响应蔓割病菌侵染的转录组分析及抗病相关基因挖掘[D]. 福州:福建农林大学,2020
[41]靖小菁,杨新笋,靳晓杰,等. 甘薯蔓割病(Fusarium oxysporum f. sp. batatas)相关基因IbMAPKK9的克隆与特性分析[J]. 作物学报,2023,49(12):3289-3301.
[42]LI Y, WANG Y N, ZHANG H, et al. The plasma membrane-localized sucrose transporter IbSWEET10 contributes to the resistance of sweet potato to Fusarium oxysporum[J]. Frontiers in Plant Science,2017,8:197.
[43]ZHANG H, ZHANG Q, ZHAI H, et al. IbBBX24 promotes the jasmonic acid pathway and enhances Fusarium wilt resistance in sweet potato[J]. The Plant Cell,2020,32(4):1102-1123.
[44]刘意,陈培茹,雷剑,等. 甘薯响应蔓割病病原菌(Fusarium oxysporum f. sp batatas)侵染的IbERF1基因序列与表达分析[J]. 基因组学与应用生物学,2022,41(1):175-184.
[45]霍进喜. 甘薯抗逆相关基因IbPIF1、IbPIF3和IbAKR的克隆与功能分析[D]. 北京:中国农业大学,2018.
[46]陈培涛. 甘薯羟基香豆素合成基因IbF6’H2和IbCOSY的克隆及其抗蔓割病功能研究[D]. 重庆:西南大学,2023.
[47]周洁,张玲玲,袁继荣,等. 生姜腐皮镰刀菌的分离鉴定及PCR快速检测方法构建[J]. 植物病理学报,2022,52(4):681-690.
[48]LIN S Q, YANG Z J, HUANG B F, et al. Comparative proteomic analysis of the sweetpotato provides insights into response mechanisms to Fusarium oxysporum f. sp. batatas[J]. Scientific Reports,2020,10(1):21368.
[49]THOMPSON A H, NARAYANIN C D, SMITH M F, et al. A disease survey of Fusarium wilt and Alternaria blight on sweet potato in South Africa[J]. Crop Protection,2011,30(11):1409-1413.
[50]胡公洛,周丽鸿. 甘薯根腐病病原的研究[J]. 植物病理学报,1982,12(3):47-52.
[51]李凌燕,肖海峻,王伟青,等. 北京大兴区甘薯根腐病原菌的分离及分子鉴定[J]. 生物技术进展,2016,6(1):67-70.
[52]银玲,田迅,李依韦,等. 甘薯根腐病病原菌鉴定[J]. 中国植保导刊,2017,37(2):10-14.
[53]MA Z M, GAO W C, LIU L F, et al. Identification of QTL for resistance to root rot in sweetpotato (Ipomoea batatas (L.) Lam) with SSR linkage maps[J]. BMC Genomics,2020,21(1):366.
[54]ZHANG C L, LUO Q C ,TANG W, et al. Transcriptome characterization and gene changes induced by Fusarium solani in sweetpotato roots[J]. Genes,2023,14(5):969.
[55]KIM T H, KIM S, PARK W, et al. Genome-wide association study to identify novel loci and genes for Fusarium root rot resistance in sweet potato using genotyping-by-sequencing[J]. Frontiers in Plant Science,2023,14:1251157.
[56]JIANG L M, JEONG J C, LEE J S, et al. Potential of Pantoea dispersa as an effective biocontrol agent for black rot in sweet potato[J]. Scientific Reports,2019,9(1):16354.
[57]HONG C E, JEONG H, JO S H, et al. A leaf-inhabiting endophytic bacterium,Rhodococcus sp. KB6,enhances sweet potato resistance to black rot disease caused by Ceratocystis fimbriata[J]. Journal of Microbiology and Biotechnology,2016,26(3):488-492.
[58]WANG C J, WANG Y Z, CHU Z H, et al. Endophytic Bacillus amyloliquefaciens YTB1407 elicits resistance against two fungal pathogens in sweet potato (Ipomoea batatas (L.) Lam.)[J]. Journal of Plant Physiology,2020,253:153260.
[59]李华伟,林志坚,张鸿,等. 甘薯薯瘟病菌RPA检测方法的建立及应用[J]. 福建农林大学学报(自然科学版),2020,49(5):583-588.
[60]刘中华,余华,方树民,等. 甘薯瘟田间自然诱发鉴定及系统聚类分析[J]. 江西农业大学学报,2014,36(5):1066-1073.
[61]袁照年,陈选阳,张招娟,等. 甘薯抗I型薯瘟病的RAPD标记筛选[J]. 江西农业大学学报,2005,27(6):861-863,938.
[62]余文英,王伟英,邱永祥,等. 水杨酸对甘薯抗薯瘟病和抗氧化酶系统的影响[J]. 福建农林大学学报(自然科学版),2008,37(1):23-26.
[63]王伟,阮妙鸿,邱永祥,等. 甘薯抗薯瘟病的苯丙烷类代谢研究[J]. 中国生态农业学报,2009,17(5):944-948.
[64]柏洁. 甘薯抗病相关基因SGT1的克隆与表达研究[D]. 福州:福建农林大学,2014.
[65]JANG I C, PARK S Y, KIM K Y, et al. Differential expression of 10 sweetpotato peroxidase genes in response to bacterial pathogen,Pectobacterium chrysanthemi[J]. Plant Physiology and Biochemistry,2004,42(5):451-455.
[66]RYU S H, KIM Y H, KIM C Y, et al. Molecular characterization of the sweet potato peroxidase SWPA4 promoter which responds to abiotic stresses and pathogen infection[J]. Physiologia Plantarum,2009,135(4):390-399.
[67]KIM H S, PARK S C, JI C Y, et al. Molecular characterization of biotic and abiotic stress-responsive MAP kinase genes,IbMPK3 and IbMPK6,in sweetpotato[J]. Plant Physiology and Biochemistry,2016,108:37-48.
[68]KIM H S, BIAN X F, LEE C J, et al. IbMPK3/IbMPK6-mediated IbSPF1 phosphorylation promotes tolerance to bacterial pathogen in sweetpotato[J]. Plant Cell Reports,2019,38(11):1403-1415.
[69]SI Z Z, WANG L J, QIAO Y K, et al. Genome-wide comparative analysis of the nucleotide-binding site-encoding genes in four Ipomoea species[J]. Frontiers in Plant Science,2022,13:960723.
[70]YAN H, ZHANG C L, ZHANG Y G, et al. Analysis of resistance inheritance and QTL mapping of sweet potato stem nematode disease[J]. Journal of Plant Genetic Resources,2023,24:1766-1777.
[71]ZHAI H, WANG F B, SI Z Z, et al. A myo-inositol-1-phosphate synthase gene,IbMIPS1,enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato[J]. Plant Biotechnology Journal,2016,14(2):592-602.
[72]CAI D G, THURAU T, TIAN Y Y, et al. Sporamin-mediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is dependent on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots[J]. Plant Molecular Biology,2003,51(6):839-849.
[73]FAN W J, WEI Z R, ZHANG M, et al. Resistance to Ditylenchus destructor infection in sweet potato by the expression of small interfering RNAs targeting unc-15,a movement-related gene[J]. Phytopathology,2015,105(11):1458-1465.
[74]GAO S, YU B, ZHAI H, et al. Enhanced stem nematode resistance of transgenic sweetpotato plants expressing oryzacystatin-I gene[J]. Agricultural Sciences in China,2011,10(4):519-525.
[75]ABAD P, FAVERY B, ROSSO M N, et al. Root-knot nematode parasitism and host response:molecular basis of a sophisticated interaction[J]. Molecular Plant Pathology,2003,4(4):217-224.
[76]SUNG Y W, KIM J, YANG J W, et al. Transcriptome-based comparative expression profiling of sweet potato during a compatible response with root-knot nematode Meloidogyne incognita infection[J]. Genes,2023,14(11):2074.
[77]LEE I H, SHIM D, JEONG J C, et al. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-resistant and susceptible sweetpotato cultivars[J]. Planta,2019,249(2):431-444.
[78]LEE I H, KIM H S, NAM K J, et al. The defense response involved in sweetpotato resistance to root-knot nematode Meloidogyne incognita:comparison of root transcriptomes of resistant and susceptible sweetpotato cultivars with respect to induced and constitutive defense responses[J]. Frontiers in Plant Science,2021,12:671677.
[79]SUNG Y W, LEE I H, SHIM D, et al. Transcriptomic changes in sweetpotato peroxidases in response to infection with the root-knot nematode Meloidogyne incognita[J]. Molecular Biology Reports,2019,46(4):4555-4564.
[80]YAMASAKI S, SAKAI J, FUJI S, et al. Comparisons among isolates of sweet potato feathery mottle virus using complete genomic RNA sequences[J]. Archives of Virology,2010,155(5):795-800.
[81]BEDNAREK R, DAVID M, FUENTES S, et al. Transcriptome analysis provides insights into the responses of sweet potato to sweet potato virus disease (SPVD)[J]. Virus Research,2021,295:198293.
[82]ZHANG K, LU H X, WAN C F, et al. The spread and transmission of sweet potato virus disease (SPVD) and its effect on the gene expression profile in sweet potato[J]. Plants,2020,9(4):492.
[83]YU Y C, PAN Z Y, WANG X, et al. Targeting of SPCSV-RNase3 via CRISPR-Cas13 confers resistance against sweet potato virus disease[J]. Molecular Plant Pathology,2022,23(1):104-117.
[84]SIVPARSAD B J, GUBBA A. Development of transgenic sweet potato with multiple virus resistance in South Africa (SA)[J]. Transgenic Research,2014,23(2):377-388.
[85]OKADA Y, SAITO A, NISHIGUCHI M, et al. Virus resistance in transgenic sweetpotato [Ipomoea batatas L.(Lam)] expressing the coat protein gene of sweet potato feathery mottle virus[J]. Theoretical and Applied Genetics,2001,103(5):743-751.
[86]肖梅. 甘薯SPW5基因克隆、表达载体构建及遗传转化探索[D]. 重庆:西南大学,2019.
[87]WU S, LAU K H, CAO Q H, et al. Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement[J]. Nature Communications,2018,9(1):4580.
[88]HIRAKAWA H, OKADA Y, TABUCHI H, et al. Survey of genome sequences in a wild sweet potato,Ipomoea trifida (H. B. K.) G. Don[J]. DNA Research,2015,22(2):171-179.
[89]LI G L, ZHANG H, LIN Z M, et al. Comparative analysis of chloroplast and mitochondrial genomes of sweet potato provides evidence of gene transfer[J]. Scientific Reports,2024,14(1):4547.
[90]LI C, ZHANG L, JI H H, et al. RNA-sequencing analysis revealed genes associated with sweet potato (Ipomoea batatas (L.) lam.) responses to stem rot during different infection stages[J]. Genes,2023,14(12):2215.
[91]YANG J, BI H P, FAN W J, et al. Efficient embryogenic suspension culturing and rapid transformation of a range of elite genotypes of sweet potato (Ipomoea batatas [L.] Lam.)[J]. Plant Science,2011,181(6):701-711.
[92]MEI G G, CHEN A, WANG Y R, et al. A simple and efficient in planta transformation method based on the active regeneration capacity of plants[J]. Plant Communications,2024,5(4):100822.
相似文献/References:
[1]唐忠厚,陈晓光,魏 猛,等.低钾下光照度与CO2浓度对不同钾效率基因型甘薯光合作用的影响[J].江苏农业学报,2016,(02):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
TANG Zhong-hou,CHEN Xiao-guang,WEI Meng,et al.Photosynthesis in response to light intensity and CO2 concentration under low potassium condition in sweet potato with different genotypes of potassium utilization efficiency[J].,2016,(05):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
[2]董 月,安 霞,张 辉,等.不同品种甘薯的生物量累积、养分吸收和分配规律[J].江苏农业学报,2016,(02):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
DONG Yue,AN Xia,ZHANG Hui,et al.Biomass accumulation and nutrients uptake and distribution in sweet potato cultivars[J].,2016,(05):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
[3]安霞,董月,吴建燕,等.氮肥形态对甘薯产量和养分吸收的影响[J].江苏农业学报,2016,(05):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
AN Xia,DONG Yue,WU Jian-yan,et al.Effects of forms of nitrogen fertilizer on yield and nutrient uptake of sweet potato[J].,2016,(05):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
[4]张辉,朱绿丹,安霞,等.水分和钾肥耦合对甘薯光合特性和水分利用效率的影响[J].江苏农业学报,2016,(06):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
ZHANG Hui,ZHU Lü-dan,AN Xia,et al.Effects of water coupled with K on the photosynthetic characteristics of sweet potato and its water use efficiency[J].,2016,(05):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
[5]杜小姣,梁小红,葛永强,等.大叶落地生根谷氨酸脱羧酶基因(KdGAD)的克隆与表达[J].江苏农业学报,2017,(01):34.[doi:10.3969/j.issn.1000-4440.2017.01.006
]
DU Xiao-jiao,LIANG Xiao-hong,GE Yong-qiang,et al.cDNA cloning and expression analysis of glutamate decarboxylase gene (KdGAD) in Kalanchoe daigremontiana[J].,2017,(05):34.[doi:10.3969/j.issn.1000-4440.2017.01.006
]
[6]郑安俭,王州飞,张红生.作物种子萌发生理与遗传研究进展[J].江苏农业学报,2017,(01):218.[doi:10.3969/j.issn.1000-4440.2017.01.035
]
ZHENG An-jian,WANG Zhou-fei,ZHANG Hong-sheng.Advances in research on physiological and genetic mechanism of seed germination[J].,2017,(05):218.[doi:10.3969/j.issn.1000-4440.2017.01.035
]
[7]张成玲,杨冬静,赵永强,等.镰刀菌胁迫对不同甘薯品种抗氧化酶及MDA含量的影响[J].江苏农业学报,2017,(02):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
ZHANG Cheng-ling,YANG Dong-jing,ZHAO Yong-qiang,et al.Effect of Fusarium stress on antioxidant enzymes and MDA content in sweet potato varieties[J].,2017,(05):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
[8]何早柯,周茜萍,王梦瑶,等.油葵脂肪酸去饱和酶基因HaFAD2-1的克隆与功能鉴定[J].江苏农业学报,2017,(02):273.[doi:doi:10.3969/j.issn.1000-4440.2017.02.006]
HE Zao-ke,ZHOU Xi-ping,WANG Meng-yao,et al.Cloning and functional identification of a fatty acid desaturase gene, HaFAD2-1, from oil sunflower[J].,2017,(05):273.[doi:doi:10.3969/j.issn.1000-4440.2017.02.006]
[9]齐鹤鹏,安霞,刘源,等.施钾量对甘薯产量及钾素吸收利用的影响[J].江苏农业学报,2016,(01):84.[doi:10.3969/j.issn.1000-4440.2016.01.013
]
QI He-peng,AN Xia,LIU Yuan,et al.Effects of potassium application rates on yield, potassium uptake and utilization in sweet potato (Ipomoea batatas L.) genotypes[J].,2016,(05):84.[doi:10.3969/j.issn.1000-4440.2016.01.013
]
[10]李隐侠,张俊,钱勇,等.山羊Kiss-1基因克隆、表达模式和SNPs筛选[J].江苏农业学报,2016,(01):151.[doi:10.3969/j.issn.1000-4440.2016.01.023]
LI Yin-xia,ZHANG Jun,QIAN Yong,et al.Sequence cloning, expression pattern and SNPs screening of Kiss-1 gene in goat[J].,2016,(05):151.[doi:10.3969/j.issn.1000-4440.2016.01.023]
[11]蒋薇,靳容,刘明,等.甘薯IbHKT-like基因的克隆与表达分析[J].江苏农业学报,2021,(04):831.[doi:doi:10.3969/j.issn.1000-4440.2021.04.003]
JIANG Wei,JIN Rong,LIU Ming,et al.Cloning and expression analysis of IbHKT-like gene in sweet potato[J].,2021,(05):831.[doi:doi:10.3969/j.issn.1000-4440.2021.04.003]