[1]杨冬静,高方园,马居奎,等.甘薯抗病基因及其功能的研究进展[J].江苏农业学报,2025,(05):1021-1030.[doi:doi:10.3969/j.issn.1000-4440.2025.05.020]
 YANG Dongjing,GAO Fangyuan,MA Jukui,et al.Research progress on disease resistance-related genes and their functions in sweet potato[J].,2025,(05):1021-1030.[doi:doi:10.3969/j.issn.1000-4440.2025.05.020]
点击复制

甘薯抗病基因及其功能的研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年05期
页码:
1021-1030
栏目:
综述
出版日期:
2025-05-31

文章信息/Info

Title:
Research progress on disease resistance-related genes and their functions in sweet potato
作者:
杨冬静高方园马居奎唐伟陈晶伟梁昭张成玲孙厚俊
(江苏徐淮地区徐州农业科学研究所/农业农村部甘薯生物学与遗传育种重点实验室,江苏徐州221131)
Author(s):
YANG DongjingGAO FangyuanMA JukuiTANG WeiCHEN JingweiLIANG ZhaoZHANG ChenglingSUN Houjun
(Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province/Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, China)
关键词:
甘薯基因克隆真菌细菌线虫基因功能抗病性
Keywords:
sweet potatogene cloningfungibacterianematodegene functiondisease resistance
分类号:
S435.31
DOI:
doi:10.3969/j.issn.1000-4440.2025.05.020
文献标志码:
A
摘要:
甘薯是重要的粮食、饲料和能源作物,中国是世界上最大的甘薯种植国,甘薯在中国国民经济中占有十分重要的地位。近年来随着气候变化和种薯、种苗地频繁调运,甘薯病害发生日趋严重,新病害不断产生,严重影响甘薯的产量和品质,制约了中国甘薯产业的健康发展。分子生物技术的快速发展给甘薯抗病分子育种研究提供了新的技术支撑和研究思路。本文主要从甘薯抗真菌病、抗细菌病、抗线虫病以及抗病毒病相关基因等方面概述了近年来甘薯抗病相关基因及其功能的研究进展,为甘薯抗病基因的进一步研究和抗病分子育种提供参考。
Abstract:
Sweet potato is an important food, feed and energy crop. China is the world’s largest producer of sweet potato, and sweet potato plays a very important role in China’s national economy. In recent years, with climate change and frequent transportation of sweet potato seedlings, the incidence of sweet potato diseases has become more and more severe and new diseases continue to emerge, seriously affecting the yield and quality of sweet potatoes and restricting the healthy development of China’s sweet potato industry. The rapid development of molecular biotechnology has provided new technical support and research ideas for disease-resistant molecular breeding in sweet potato. This review mainly summarizes the research progress of sweet potato disease resistance-related genes and their functions in recent years from the aspects of anti-fungal, bacterial, nematode and viral disease-related genes. This provides a reference for further research on disease resistance-related genes in sweet potatoes and molecular breeding for disease resistance.

参考文献/References:

[1]马代夫,刘庆昌,张立明. 中国甘薯[M]. 南京:江苏凤凰科学技术出版社,2021.
[2]KWAK S S. Biotechnology of the sweetpotato:ensuring global food and nutrition security in the face of climate change[J]. Plant Cell Reports,2019,38(11):1361-1363.
[3]KATAYAMA K, KOBAYASHI A, SAKAI T, et al. Recent progress in sweetpotato breeding and cultivars for diverse applications in Japan[J]. Breeding Science,2017,67(1):3-14.
[4]SHIH C K, CHEN C M, HSIAO T J, et al. White sweet potato as meal replacement for overweight white-collar workers:a randomized controlled trial[J]. Nutrients,2019,11(1):165.
[5]HERAWATI E R N, SANTOSA U, SENTANA S, et al. Protective effects of anthocyanin extract from purple sweet potato (Ipomoea batatas L.) on blood MDA levels,liver and renal activity,and blood pressure of hyperglycemic rats[J]. Preventive Nutrition and Food Science,2020,25(4):375-379.
[6]LAMARO G P, TSEHAYE Y, GIRMA A, et al. Evaluation of yield and nutraceutical traits of orange-fleshed sweet potato storage roots in two agro-climatic zones of northern Ethiopia[J]. Plants,2023,12(6):1319.
[7]SUN H N, MU T H, XI L S, et al. Sweet potato (Ipomoea batatas L.) leaves as nutritional and functional foods[J]. Food Chemistry,2014,156:380-389.
[8]HALSTED B D. Some fungous diseases of the sweet potato. The black rot[J]. New Jersey Agricultural Experiment Station Bulletin,1890,76:7-14.
[9]谢逸萍. 甘薯根腐病抗病性室内鉴定方法的研究[J]. 植物保护,1999,25(6):7-9.
[10]MA J K, CHEN J W, ZHANG C L, et al. Development and characterisation of SSR markers in the potato rot nematode Ditylenchus destructor[J]. Nematology, 2022, 24: 959-969.
[11]刘中华,余华,邱思鑫,等. 蔓割病不同抗性甘薯品种的茎部细胞结构观察[J]. 植物遗传资源学报,2015,16(3):541-548.
[12]袁照年,陈凤翔,陈选阳,等. 甘薯抗薯瘟病的遗传及其与产量性状的关系[J]. 福建农业大学学报,1999,28(4):413-416.
[13]张新新,陈景益,房伯平,等. 广东省甘薯疮痂病病原菌鉴定及国内主要菜用甘薯种质抗性评价[J]. 植物保护学报,2021,48(2):298-304.
[14]谢逸萍,孙厚俊,邢继英. 中国各大薯区甘薯病虫害分布及危害程度研究[J]. 江西农业学报,2009,21(8):121-122.
[15]谢昀烨,王会福,应俊杰,等. 浙江甘薯蔓枯病病原菌鉴定[J]. 植物病理学报,2021,51(3):441-445.
[16]张莉丽,王丽,谢关林,等. 甘薯茎腐病田间症状识别与快速镜检诊断研究[J]. 农学学报,2023,13(6):32-38.
[17]赵永强,徐振,杨冬静,等. 甘薯黑痣病菌的生物学特性研究[J]. 北方农业学报,2018,46(5):89-92.
[18]高波,王容燕,马娟,等. 甘薯爪哇黑腐病的病原鉴定[J]. 植物保护,2016,42(5):200-204,209.
[19]黄立飞,罗忠霞,房伯平,等. 甘薯白绢病病原菌的鉴定[J]. 植物保护学报,2013,40(6):569-570.
[20]高波,马娟,王容燕.甘薯象耳豆根结线虫的初报[C]// 中国植物病理学会.第十四届全国植物线虫学学术研讨会论文集. 保定:中国植物病理学会,2018.
[21]王海荣,段长勇,黄千千,等. 甘薯病毒种类及甘薯抗病毒策略研究进展[J]. 河南科技学院学报(自然科学版),2023,51(5):1-7,15.
[22]王庆美,王荫墀,王建军,等. 甘薯病毒病研究进展[J]. 山东农业科学,1994,26(4):36-39.
[23]YANG Y H, CHEN Y Q, BO Y X, et al. Research progress in the mechanisms of resistance to biotic stress in sweet potato[J]. Genes,2023,14(11):2106.
[24]陈观水. 甘薯抗病相关基因的克隆与分析[D]. 福州:福建农林大学,2007.
[25]林巧玲,曾会才. 甘薯中NBS-LRR类抗病基因同源序列的克隆及序列分析[J]. 西北农业学报,2007,16(2):65-69.
[26]王钰,王荣富,何国浩. 甘薯抗病基因同源序列的克隆与分析[J]. 南京农业大学学报,2008,31(3):81-86.
[27]KIM Y H, JEONG J C, PARK S, et al. Molecular characterization of two ethylene response factor genes in sweetpotato that respond to stress and activate the expression of defense genes in tobacco leaves[J]. Journal of Plant Physiology,2012,169(11):1112-1120.
[28]王连军,贾礼聪,苏文瑾,等. 甘薯近缘野生种抗病基因同源序列的分离与鉴定[J]. 湖北农业科学,2013,52(11):2680-2683.
[29]王崇,王连军,雷剑,等. 甘薯抗病相关基因TAO1-like的TRAP分析[J]. 湖北农业科学,2019,58(18):152-155.
[30]黄小芳,毕楚韵,石媛媛,等. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报,2020,46(8):1195-1207.
[31]毕楚韵,黄小芳,周丽香,等. 三浅裂野牵牛NBS-LRR类抗病基因的鉴定和分析[J]. 分子植物育种,2021,19(9):2826-2836.
[32]陆漱韵,刘庆昌,李惟基. 甘薯育种学[M]. 北京:中国农业出版社,1998:286-289.
[33]MURAMOTO N, TANAKA T, SHIMAMURA T, et al. Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storage roots[J]. Plant Cell Reports,2012,31(6):987-997.
[34]杨冬静,马居奎,唐伟,等. 甘薯块根响应长喙壳菌(Ceratocystis fimbriata)侵染的转录组测序分析[J]. 江西农业学报,2022,34(7):60-69.
[35]YANG D J, BIAN X F, KIM H S, et al. IbINV positively regulates resistance to black rot disease caused by Ceratocystis fimbriata in sweet potato[J]. International Journal of Molecular Sciences,2023,24(22):16454.
[36]吴茜,宫颖,邓黄玥,等. 甘薯几丁质酶基因IbChiA启动子的克隆及功能分析[J]. 分子植物育种,2022,20(3):742-749.
[37]方树民,陈玉森,朱伯昌,等. 药剂浸苗处理防治甘薯蔓割病的试验[J]. 福建农业大学学报,1995,24(4):420-425.
[38]TAO L, ZHAO Y, WU Y, et al. Transcriptome profiling and digital gene expression by deep sequencing in early somatic embryogenesis of endangered medicinal Eleutherococcus senticosus Maxim[J]. Gene,2016,578(1):17-24.
[39]刘中华,林志坚,李华伟,等. 甘薯蔓割病抗性相关SRAP标记的获得[J]. 福建农业学报,2017,32(6):639-644.
[40]ONOFUA D. 甘薯响应蔓割病菌侵染的转录组分析及抗病相关基因挖掘[D]. 福州:福建农林大学,2020
[41]靖小菁,杨新笋,靳晓杰,等. 甘薯蔓割病(Fusarium oxysporum f. sp. batatas)相关基因IbMAPKK9的克隆与特性分析[J]. 作物学报,2023,49(12):3289-3301.
[42]LI Y, WANG Y N, ZHANG H, et al. The plasma membrane-localized sucrose transporter IbSWEET10 contributes to the resistance of sweet potato to Fusarium oxysporum[J]. Frontiers in Plant Science,2017,8:197.
[43]ZHANG H, ZHANG Q, ZHAI H, et al. IbBBX24 promotes the jasmonic acid pathway and enhances Fusarium wilt resistance in sweet potato[J]. The Plant Cell,2020,32(4):1102-1123.
[44]刘意,陈培茹,雷剑,等. 甘薯响应蔓割病病原菌(Fusarium oxysporum f. sp batatas)侵染的IbERF1基因序列与表达分析[J]. 基因组学与应用生物学,2022,41(1):175-184.
[45]霍进喜. 甘薯抗逆相关基因IbPIF1、IbPIF3和IbAKR的克隆与功能分析[D]. 北京:中国农业大学,2018.
[46]陈培涛. 甘薯羟基香豆素合成基因IbF6’H2和IbCOSY的克隆及其抗蔓割病功能研究[D]. 重庆:西南大学,2023.
[47]周洁,张玲玲,袁继荣,等. 生姜腐皮镰刀菌的分离鉴定及PCR快速检测方法构建[J]. 植物病理学报,2022,52(4):681-690.
[48]LIN S Q, YANG Z J, HUANG B F, et al. Comparative proteomic analysis of the sweetpotato provides insights into response mechanisms to Fusarium oxysporum f. sp. batatas[J]. Scientific Reports,2020,10(1):21368.
[49]THOMPSON A H, NARAYANIN C D, SMITH M F, et al. A disease survey of Fusarium wilt and Alternaria blight on sweet potato in South Africa[J]. Crop Protection,2011,30(11):1409-1413.
[50]胡公洛,周丽鸿. 甘薯根腐病病原的研究[J]. 植物病理学报,1982,12(3):47-52.
[51]李凌燕,肖海峻,王伟青,等. 北京大兴区甘薯根腐病原菌的分离及分子鉴定[J]. 生物技术进展,2016,6(1):67-70.
[52]银玲,田迅,李依韦,等. 甘薯根腐病病原菌鉴定[J]. 中国植保导刊,2017,37(2):10-14.
[53]MA Z M, GAO W C, LIU L F, et al. Identification of QTL for resistance to root rot in sweetpotato (Ipomoea batatas (L.) Lam) with SSR linkage maps[J]. BMC Genomics,2020,21(1):366.
[54]ZHANG C L, LUO Q C ,TANG W, et al. Transcriptome characterization and gene changes induced by Fusarium solani in sweetpotato roots[J]. Genes,2023,14(5):969.
[55]KIM T H, KIM S, PARK W, et al. Genome-wide association study to identify novel loci and genes for Fusarium root rot resistance in sweet potato using genotyping-by-sequencing[J]. Frontiers in Plant Science,2023,14:1251157.
[56]JIANG L M, JEONG J C, LEE J S, et al. Potential of Pantoea dispersa as an effective biocontrol agent for black rot in sweet potato[J]. Scientific Reports,2019,9(1):16354.
[57]HONG C E, JEONG H, JO S H, et al. A leaf-inhabiting endophytic bacterium,Rhodococcus sp. KB6,enhances sweet potato resistance to black rot disease caused by Ceratocystis fimbriata[J]. Journal of Microbiology and Biotechnology,2016,26(3):488-492.
[58]WANG C J, WANG Y Z, CHU Z H, et al. Endophytic Bacillus amyloliquefaciens YTB1407 elicits resistance against two fungal pathogens in sweet potato (Ipomoea batatas (L.) Lam.)[J]. Journal of Plant Physiology,2020,253:153260.
[59]李华伟,林志坚,张鸿,等. 甘薯薯瘟病菌RPA检测方法的建立及应用[J]. 福建农林大学学报(自然科学版),2020,49(5):583-588.
[60]刘中华,余华,方树民,等. 甘薯瘟田间自然诱发鉴定及系统聚类分析[J]. 江西农业大学学报,2014,36(5):1066-1073.
[61]袁照年,陈选阳,张招娟,等. 甘薯抗I型薯瘟病的RAPD标记筛选[J]. 江西农业大学学报,2005,27(6):861-863,938.
[62]余文英,王伟英,邱永祥,等. 水杨酸对甘薯抗薯瘟病和抗氧化酶系统的影响[J]. 福建农林大学学报(自然科学版),2008,37(1):23-26.
[63]王伟,阮妙鸿,邱永祥,等. 甘薯抗薯瘟病的苯丙烷类代谢研究[J]. 中国生态农业学报,2009,17(5):944-948.
[64]柏洁. 甘薯抗病相关基因SGT1的克隆与表达研究[D]. 福州:福建农林大学,2014.
[65]JANG I C, PARK S Y, KIM K Y, et al. Differential expression of 10 sweetpotato peroxidase genes in response to bacterial pathogen,Pectobacterium chrysanthemi[J]. Plant Physiology and Biochemistry,2004,42(5):451-455.
[66]RYU S H, KIM Y H, KIM C Y, et al. Molecular characterization of the sweet potato peroxidase SWPA4 promoter which responds to abiotic stresses and pathogen infection[J]. Physiologia Plantarum,2009,135(4):390-399.
[67]KIM H S, PARK S C, JI C Y, et al. Molecular characterization of biotic and abiotic stress-responsive MAP kinase genes,IbMPK3 and IbMPK6,in sweetpotato[J]. Plant Physiology and Biochemistry,2016,108:37-48.
[68]KIM H S, BIAN X F, LEE C J, et al. IbMPK3/IbMPK6-mediated IbSPF1 phosphorylation promotes tolerance to bacterial pathogen in sweetpotato[J]. Plant Cell Reports,2019,38(11):1403-1415.
[69]SI Z Z, WANG L J, QIAO Y K, et al. Genome-wide comparative analysis of the nucleotide-binding site-encoding genes in four Ipomoea species[J]. Frontiers in Plant Science,2022,13:960723.
[70]YAN H, ZHANG C L, ZHANG Y G, et al. Analysis of resistance inheritance and QTL mapping of sweet potato stem nematode disease[J]. Journal of Plant Genetic Resources,2023,24:1766-1777.
[71]ZHAI H, WANG F B, SI Z Z, et al. A myo-inositol-1-phosphate synthase gene,IbMIPS1,enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato[J]. Plant Biotechnology Journal,2016,14(2):592-602.
[72]CAI D G, THURAU T, TIAN Y Y, et al. Sporamin-mediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is dependent on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots[J]. Plant Molecular Biology,2003,51(6):839-849.
[73]FAN W J, WEI Z R, ZHANG M, et al. Resistance to Ditylenchus destructor infection in sweet potato by the expression of small interfering RNAs targeting unc-15,a movement-related gene[J]. Phytopathology,2015,105(11):1458-1465.
[74]GAO S, YU B, ZHAI H, et al. Enhanced stem nematode resistance of transgenic sweetpotato plants expressing oryzacystatin-I gene[J]. Agricultural Sciences in China,2011,10(4):519-525.
[75]ABAD P, FAVERY B, ROSSO M N, et al. Root-knot nematode parasitism and host response:molecular basis of a sophisticated interaction[J]. Molecular Plant Pathology,2003,4(4):217-224.
[76]SUNG Y W, KIM J, YANG J W, et al. Transcriptome-based comparative expression profiling of sweet potato during a compatible response with root-knot nematode Meloidogyne incognita infection[J]. Genes,2023,14(11):2074.
[77]LEE I H, SHIM D, JEONG J C, et al. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-resistant and susceptible sweetpotato cultivars[J]. Planta,2019,249(2):431-444.
[78]LEE I H, KIM H S, NAM K J, et al. The defense response involved in sweetpotato resistance to root-knot nematode Meloidogyne incognita:comparison of root transcriptomes of resistant and susceptible sweetpotato cultivars with respect to induced and constitutive defense responses[J]. Frontiers in Plant Science,2021,12:671677.
[79]SUNG Y W, LEE I H, SHIM D, et al. Transcriptomic changes in sweetpotato peroxidases in response to infection with the root-knot nematode Meloidogyne incognita[J]. Molecular Biology Reports,2019,46(4):4555-4564.
[80]YAMASAKI S, SAKAI J, FUJI S, et al. Comparisons among isolates of sweet potato feathery mottle virus using complete genomic RNA sequences[J]. Archives of Virology,2010,155(5):795-800.
[81]BEDNAREK R, DAVID M, FUENTES S, et al. Transcriptome analysis provides insights into the responses of sweet potato to sweet potato virus disease (SPVD)[J]. Virus Research,2021,295:198293.
[82]ZHANG K, LU H X, WAN C F, et al. The spread and transmission of sweet potato virus disease (SPVD) and its effect on the gene expression profile in sweet potato[J]. Plants,2020,9(4):492.
[83]YU Y C, PAN Z Y, WANG X, et al. Targeting of SPCSV-RNase3 via CRISPR-Cas13 confers resistance against sweet potato virus disease[J]. Molecular Plant Pathology,2022,23(1):104-117.
[84]SIVPARSAD B J, GUBBA A. Development of transgenic sweet potato with multiple virus resistance in South Africa (SA)[J]. Transgenic Research,2014,23(2):377-388.
[85]OKADA Y, SAITO A, NISHIGUCHI M, et al. Virus resistance in transgenic sweetpotato [Ipomoea batatas L.(Lam)] expressing the coat protein gene of sweet potato feathery mottle virus[J]. Theoretical and Applied Genetics,2001,103(5):743-751.
[86]肖梅. 甘薯SPW5基因克隆、表达载体构建及遗传转化探索[D]. 重庆:西南大学,2019.
[87]WU S, LAU K H, CAO Q H, et al. Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement[J]. Nature Communications,2018,9(1):4580.
[88]HIRAKAWA H, OKADA Y, TABUCHI H, et al. Survey of genome sequences in a wild sweet potato,Ipomoea trifida (H. B. K.) G. Don[J]. DNA Research,2015,22(2):171-179.
[89]LI G L, ZHANG H, LIN Z M, et al. Comparative analysis of chloroplast and mitochondrial genomes of sweet potato provides evidence of gene transfer[J]. Scientific Reports,2024,14(1):4547.
[90]LI C, ZHANG L, JI H H, et al. RNA-sequencing analysis revealed genes associated with sweet potato (Ipomoea batatas (L.) lam.) responses to stem rot during different infection stages[J]. Genes,2023,14(12):2215.
[91]YANG J, BI H P, FAN W J, et al. Efficient embryogenic suspension culturing and rapid transformation of a range of elite genotypes of sweet potato (Ipomoea batatas [L.] Lam.)[J]. Plant Science,2011,181(6):701-711.
[92]MEI G G, CHEN A, WANG Y R, et al. A simple and efficient in planta transformation method based on the active regeneration capacity of plants[J]. Plant Communications,2024,5(4):100822.

相似文献/References:

[1]唐忠厚,陈晓光,魏 猛,等.低钾下光照度与CO2浓度对不同钾效率基因型甘薯光合作用的影响[J].江苏农业学报,2016,(02):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
 TANG Zhong-hou,CHEN Xiao-guang,WEI Meng,et al.Photosynthesis in response to light intensity and CO2 concentration under low potassium condition in sweet potato with different genotypes of potassium utilization efficiency[J].,2016,(05):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
[2]董 月,安 霞,张 辉,等.不同品种甘薯的生物量累积、养分吸收和分配规律[J].江苏农业学报,2016,(02):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
 DONG Yue,AN Xia,ZHANG Hui,et al.Biomass accumulation and nutrients uptake and distribution in sweet potato cultivars[J].,2016,(05):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
[3]安霞,董月,吴建燕,等.氮肥形态对甘薯产量和养分吸收的影响[J].江苏农业学报,2016,(05):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
 AN Xia,DONG Yue,WU Jian-yan,et al.Effects of forms of nitrogen fertilizer on yield and nutrient uptake of sweet potato[J].,2016,(05):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
[4]张辉,朱绿丹,安霞,等.水分和钾肥耦合对甘薯光合特性和水分利用效率的影响[J].江苏农业学报,2016,(06):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
 ZHANG Hui,ZHU Lü-dan,AN Xia,et al.Effects of water coupled with K on the photosynthetic characteristics of sweet potato and its water use efficiency[J].,2016,(05):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
[5]杜小姣,梁小红,葛永强,等.大叶落地生根谷氨酸脱羧酶基因(KdGAD)的克隆与表达[J].江苏农业学报,2017,(01):34.[doi:10.3969/j.issn.1000-4440.2017.01.006 ]
 DU Xiao-jiao,LIANG Xiao-hong,GE Yong-qiang,et al.cDNA cloning and expression analysis of glutamate decarboxylase gene (KdGAD) in Kalanchoe daigremontiana[J].,2017,(05):34.[doi:10.3969/j.issn.1000-4440.2017.01.006 ]
[6]郑安俭,王州飞,张红生.作物种子萌发生理与遗传研究进展[J].江苏农业学报,2017,(01):218.[doi:10.3969/j.issn.1000-4440.2017.01.035 ]
 ZHENG An-jian,WANG Zhou-fei,ZHANG Hong-sheng.Advances in research on physiological and genetic mechanism of seed germination[J].,2017,(05):218.[doi:10.3969/j.issn.1000-4440.2017.01.035 ]
[7]张成玲,杨冬静,赵永强,等.镰刀菌胁迫对不同甘薯品种抗氧化酶及MDA含量的影响[J].江苏农业学报,2017,(02):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
 ZHANG Cheng-ling,YANG Dong-jing,ZHAO Yong-qiang,et al.Effect of Fusarium stress on antioxidant enzymes and MDA content in sweet potato varieties[J].,2017,(05):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
[8]何早柯,周茜萍,王梦瑶,等.油葵脂肪酸去饱和酶基因HaFAD2-1的克隆与功能鉴定[J].江苏农业学报,2017,(02):273.[doi:doi:10.3969/j.issn.1000-4440.2017.02.006]
 HE Zao-ke,ZHOU Xi-ping,WANG Meng-yao,et al.Cloning and functional identification of a fatty acid desaturase gene, HaFAD2-1, from oil sunflower[J].,2017,(05):273.[doi:doi:10.3969/j.issn.1000-4440.2017.02.006]
[9]齐鹤鹏,安霞,刘源,等.施钾量对甘薯产量及钾素吸收利用的影响[J].江苏农业学报,2016,(01):84.[doi:10.3969/j.issn.1000-4440.2016.01.013 ]
 QI He-peng,AN Xia,LIU Yuan,et al.Effects of potassium application rates on yield, potassium uptake and utilization in sweet potato (Ipomoea batatas L.) genotypes[J].,2016,(05):84.[doi:10.3969/j.issn.1000-4440.2016.01.013 ]
[10]李隐侠,张俊,钱勇,等.山羊Kiss-1基因克隆、表达模式和SNPs筛选[J].江苏农业学报,2016,(01):151.[doi:10.3969/j.issn.1000-4440.2016.01.023]
 LI Yin-xia,ZHANG Jun,QIAN Yong,et al.Sequence cloning, expression pattern and SNPs screening of Kiss-1 gene in goat[J].,2016,(05):151.[doi:10.3969/j.issn.1000-4440.2016.01.023]
[11]蒋薇,靳容,刘明,等.甘薯IbHKT-like基因的克隆与表达分析[J].江苏农业学报,2021,(04):831.[doi:doi:10.3969/j.issn.1000-4440.2021.04.003]
 JIANG Wei,JIN Rong,LIU Ming,et al.Cloning and expression analysis of IbHKT-like gene in sweet potato[J].,2021,(05):831.[doi:doi:10.3969/j.issn.1000-4440.2021.04.003]

备注/Memo

备注/Memo:
收稿日期:2024-10-18基金项目:国家自然科学基金项目(32001599);国家现代农业产业技术体系项目(CARS-10)作者简介:杨冬静(1983-),女,四川射洪人,博士,副研究员,主要从事植物病理学研究。(E-mail)njnd831215@126.com
更新日期/Last Update: 2025-06-24