[1]段娅敏,王后苗,杨泽峰,等.基于转录组解析玉米苗期根系对非生物胁迫的响应[J].江苏农业学报,2025,(05):848-857.[doi:doi:10.3969/j.issn.1000-4440.2025.05.003]
 DUAN Yamin,WANG Houmiao,YANG Zefeng,et al.Transcriptome-based analysis of the response of maize root to abiotic stress at seedling stage[J].,2025,(05):848-857.[doi:doi:10.3969/j.issn.1000-4440.2025.05.003]
点击复制

基于转录组解析玉米苗期根系对非生物胁迫的响应()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年05期
页码:
848-857
栏目:
遗传育种·生理生化
出版日期:
2025-05-31

文章信息/Info

Title:
Transcriptome-based analysis of the response of maize root to abiotic stress at seedling stage
作者:
段娅敏王后苗杨泽峰徐辰武李鹏程王芸芸
(扬州大学农学院/江苏省作物遗传生理重点实验室/植物功能基因组学教育部重点实验室/江苏省作物基因组学与分子育种重点实验室/粮食作物现代产业协同创新中心,江苏扬州225009)
Author(s):
DUAN YaminWANG HoumiaoYANG ZefengXU ChenwuLI PengchengWANG Yunyun
(Agricultural College of Yangzhou University/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics (Yangzhou University), Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, China)
关键词:
玉米非生物胁迫转录组学差异表达基因脱落酸
Keywords:
maizeabiotic stresstranscriptomicsdifferentially expressed genesabscisic acid
分类号:
T513
DOI:
doi:10.3969/j.issn.1000-4440.2025.05.003
文献标志码:
A
摘要:
非生物胁迫已成为制约玉米产量和品质的关键因素之一。为了阐明玉米响应非生物胁迫的机制,本研究以玉米自交系B73为试验材料,设置了对照(CK)、干旱胁迫处理(D)、盐胁迫处理(S)以及干旱+盐复合胁迫处理(DS),对B73主胚根长进行动态监测,并对根系进行转录组测序。表型分析结果表明,与对照相比,卷苗后第3 d至第7 d不同胁迫处理主胚根长均显著变短。差异表达分析结果显示,在对照和不同胁迫处理比较组中共鉴定到1 526个差异表达基因。在对照与干旱胁迫、盐胁迫和干旱+盐复合胁迫比较组中分别鉴定到207个、170个和1 274个差异表达基因。功能富集结果表明,这些差异表达基因主要参与由脱落酸(ABA)合成和信号转导、转录因子介导的应对非生物胁迫的生物学过程。其中,MYB家族和ERF家族转录因子基因对非生物胁迫的响应最大。本研究结果为进一步揭示玉米幼苗响应非生物胁迫的分子机制奠定了基础。
Abstract:
Abiotic stresses (drought, salt) have become one of the key factors restricting the yield and quality of maize. To elucidate the mechanisms of maize responsed to abiotic stresses, in this study, B73 was used as the experimental material, and four treatments were set up: control (CK), drought stress treatment (D), salt stress treatment (S) and drought + salt compound stress treatment (DS). Primary root length was dynamically monitored, and the root transcriptome was sequenced. The results of phenotypic analysis showed that the primary root length was significantly shorter under different treatments compared with the control. A total of 1 526 differentially expressed genes were identified in the comparison groups between the control and different stress treatments. A total of 207, 170 and 1 274 differentially expressed genes were identified in the comparison groups between the control and drought stress, salt stress and drought + salt compound stress. Functional enrichment results suggested that these differentially expressed genes were mainly involved in the biological processes mediated by abscisic acid synthesis and signal transduction, and transcription factors in response to abiotic stress. MYB and ERF family transcription factor genes showed the greatest response to abiotic stress. The results of this study lay a foundation for further revealing the molecular mechanism of maize seedlings in response to abiotic stress.

参考文献/References:

[1]陈淑梅,安玉富. 我国玉米种植业发展现状及方向探讨[J]. 中国农业信息,2012,24(19):97.
[2]SKIRYCZ A, INZ D. More from less:plant growth under limited water[J]. Current Opinion in Biotechnology,2010,21(2):197-203.
[3]CRAMER G R. Abiotic stress and plant responses from the whole vine to the genes[J]. Australian Journal of Grape and Wine Research,2010,16:86-93.
[4]彭菲. UPF基因在玉米非生物胁迫抗性中的作用[D]. 济南:山东大学,2023.
[5]YANG X Y, ZHU X J, WEI J, et al. Primary root response to combined drought and heat stress is regulated via salicylic acid metabolism in maize[J]. BMC Plant Biology,2022,22(1):417.
[6]关淑艳,姜青平,韩利圆,等. 生物育种在玉米逆境胁迫中的研究进展[J]. 吉林农业大学学报,2024,46(1):1-9.
[7]吴祖葵,杨敬华,刘勍. 我国玉米主产省自然灾害灾情分析[J]. 中国农业资源与区划,2018,39(3):9-17.
[8]葛瑶,栾明鉴,张雪楠,等. 中国盐生植物分布与盐碱地类型的关系[J]. 齐鲁工业大学学报,2021,35(2):14-20.
[9]张鹏钰. ZmRL6在玉米幼苗期应答干旱胁迫中的功能及机制解析[D]. 郑州:河南农业大学,2021.
[10]MENG Y T, HUANG J, JING H K, et al. Exogenous abscisic acid alleviates Cd toxicity in Arabidopsis thaliana by inhibiting Cd uptake,translocation and accumulation,and promoting Cd chelation and efflux[J]. Plant Science,2022,325:111464.
[11]ABLEY K, FORMOSA-JORDAN P, TAVARES H, et al. An ABA-GA bistable switch can account for natural variation in the variability of Arabidopsis seed germination time[J]. Elife,2021,10:e59485.
[12]贺正华. ZmPYL及ZmPP2C-A家族基因调控玉米非生物胁迫应答的功能及自然变异研究[D]. 武汉:华中农业大学, 2021.
[13]ZHU J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology,2002,53:247-273.
[14]SHAO H B, WANG H Y, TANG X L. NAC transcription factors in plant multiple abiotic stress responses:progress and prospects[J]. Frontiers in Plant Science,2015,6:902.
[15]MAHAJAN S, TUTEJA N. Cold,salinity and drought stresses:an overview[J]. Archives of Biochemistry and Biophysics,2005,444(2):139-158.
[16]QIN F, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Achievements and challenges in understanding plant abiotic stress responses and tolerance[J]. Plant & Cell Physiology,2011,52(9):1569-1582.
[17]WANG H Y, WANG H L, SHAO H B, et al. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology[J]. Frontiers in Plant Science,2016,7:67.
[18]KIM D, LANGMEAD B, SALZBERG S L. HISAT:a fast spliced aligner with low memory requirements[J]. Nature Methods,2015,12(4):357-360.
[19]董菁,张春宵,刘学岩,等. 玉米苗期根部比较转录组分析揭示耐盐性差异机制[J]. 玉米科学,2023,31(6):30-40.
[20]陈东滨,王茜茜,孙智仪,等. 玉米ZmXTH23的克隆、表达及其对盐胁迫和干旱胁迫的响应[J]. 农业生物技术学报,2019,27(9):1533-1541.
[21]LI P C, CAO W, FANG H M, et al. Transcriptomic profiling of the maize (Zea mays L.) leaf response to abiotic stresses at the seedling stage[J]. Frontiers in Plant Science,2017,8:290.
[22]PELEG Z, BLUMWALD E. Hormone balance and abiotic stress tolerance in crop plants[J]. Current Opinion in Plant Biology,2011,14(3):290-295.
[23]CHEN K, LI G J, BRESSAN R A, et al. Abscisic acid dynamics,signaling,and functions in plants[J]. Journal of Integrative Plant Biology,2020,62(1):25-54.
[24]NAMBARA E, MARION-POLL A. Abscisic acid biosynthesis and catabolism[J]. Annual Review of Plant Biology,2005,56:165-185.
[25]CHAN Z L. Expression profiling of ABA pathway transcripts indicates crosstalk between abiotic and biotic stress responses in Arabidopsis[J]. Genomics,2012,100(2):110-115.
[26]SHAN X H, LI Y D, JIANG Y, et al. Transcriptome profile analysis of maize seedlings in response to high-salinity,drought and cold stresses by deep sequencing[J]. Plant Molecular Biology Reporter,2013,31(6):1485-1491.
[27]SHI G X, HUANG F, GONG Y, et al. RNA-Seq analysis reveals that multiple phytohormone biosynthesis and signal transduction pathways are reprogrammed in curled-cotyledons mutant of soybean (Glycine max (L.) Merr)[J]. BMC Genomics,2014,15(1):510.
[28]SONG Y P, CI D, TIAN M, et al. Comparison of the physiological effects and transcriptome responses of Populus simonii under different abiotic stresses[J]. Plant Molecular Biology,2014,86(1/2):139-156.
[29]MIAO Z Y, XU W, LI D F, et al. De novo transcriptome analysis of Medicago falcata reveals novel insights about the mechanisms underlying abiotic stress-responsive pathway[J]. BMC Genomics,2015,16:818.
[30]SHANKAR R, BHATTACHARJEE A, JAIN M. Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses[J]. Scientific Reports,2016,6:23719.
[31]TAN B C, SCHWARTZ S H, ZEEVAART J A, et al. Genetic control of abscisic acid biosynthesis in maize[J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94(22):12235-12240.
[32]IUCHI S, KOBAYASHI M, TAJI T, et al. Regulation of drought tolerance by gene manipulation of 9-Cis-epoxycarotenoid dioxygenase,a key enzyme in abscisic acid biosynthesis in Arabidopsis[J]. The Plant Journal,2001,27(4):325-333.
[33]XIONG L, ISHITANI M, LEE H, et al. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression[J]. The Plant Cell,2001,13(9):2063-2083.
[34]FINKELSTEIN R. Abscisic acid synthesis and response[J]. The Arabidopsis Book,2013,11:e0166.
[35]FAN W Q, ZHAO M Y, LI S X, et al. Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots[J]. BMC Plant Biology,2016,16:99.
[36]GOLLDACK D, LKING I, YANG O. Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network[J]. Plant Cell Reports,2011,30(8):1383-1391.
[37]DU H W, HUANG M, ZHANG Z X, et al. Genome-wide analysis of the AP2/ERF gene family in maize waterlogging stress response[J]. Euphytica,2014,198(1):115-126.
[38]GOLLDACK D, LKING I, YANG O. Plant tolerance to drought and salinity:stress regulating transcription factors and their functional significance in the cellular transcriptional network[J]. Plant Cell Reports,2011,30(8):1383-1391.
[39]DU H W, HUANG M, ZHANG Z X, et al. Genome-wide analysis of the AP2/ERF gene family in maize waterlogging stress response[J]. Euphytica,2014,198(1):115-126.
[40]RABINOWICZ P D, BRAUN E L, WOLFE A D, et al. Maize R2R3 Myb genes:sequence analysis reveals amplification in the higher plants[J]. Genetics,1999,153(1):427-444.
[41]MA L F, HU L X, FAN J B, et al. Cotton GhERF38 gene is involved in plant response to salt/drought and ABA[J]. Ecotoxicology,2017,26(6):841-854.
[42]TANG Y H, BAO X X, ZHI Y L, et al. Overexpression of a MYB family gene,OsMYB6,increases drought and salinity stress tolerance in transgenic rice[J]. Frontiers in Plant Science,2019,10:168.
[43]HE Y N, LI W, LV J, et al. Ectopic expression of a wheat MYB transcription factor gene,TaMYB73,improves salinity stress tolerance in Arabidopsis thaliana[J]. Journal of Experimental Botany,2012,63(3):1511-1522.
[44]CASARETTO J A, EL-KEREAMY A, ZENG B, et al. Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance[J]. BMC Genomics,2016,17:312.
[45]朱叶青. 玉米转录因子ZmMYB39的耐旱功能与作用机制研究[D]. 武汉:长江大学,2022.
[46]MA H Z, LIU C, LI Z X, et al. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development[J]. Plant Physiology,2018,178(2):753-770.
[47]YING S, ZHANG D F, FU J, et al. Cloning and characterization of a maize bZIP transcription factor,ZmbZIP72,confers drought and salt tolerance in transgenic Arabidopsis[J]. Planta,2012,235(2):253-266.

相似文献/References:

[1]宝华宾,梁帅强,吕远大,等.玉米籽粒蛋白含量Meta-QTL及候选基因分析[J].江苏农业学报,2016,(04):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
 BAO Hua-bin,LIANG Shuai-qiang,LYU Yuan- da,et al.Analysis of meta-QTL and candidate genes related to protein concentration in maize grain[J].,2016,(05):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
[2]印志同,秦秋霞,阚欣,等.玉米快速叶绿素荧光参数全基因组关联分析[J].江苏农业学报,2016,(04):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
 YIN Zhi-tong,QIN Qiu-xia,KAN Xin,et al.Genome-wide association analysis of fast chlorophyll fluorescence parameters in maize[J].,2016,(05):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
[3]岳海旺,陈淑萍,彭海成,等.玉米籽粒灌浆特性品种间比较[J].江苏农业学报,2016,(05):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
 YUE Hai-wang,CHEN Shu-ping,PENG Hai-cheng,et al.Grain filling characteristics in maize materials[J].,2016,(05):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
[4]周玲,梁帅强,林峰,等.玉米二态性 InDel 位点的鉴定和分子标记开发[J].江苏农业学报,2016,(06):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
 ZHOU Ling,LIANG Shuai-qiang,LIN Feng,et al.Biallelic InDel loci detection and molecular marker development in maize[J].,2016,(05):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
[5]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
 LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(05):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[6]江彬,毕银丽,申慧慧,等.氮营养与AM真菌协同对玉米生长及土壤肥力的影响[J].江苏农业学报,2017,(02):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
 JIANG Bin,BI Yin-li,SHEN Hui-hui,et al.Synergetic effects of Arbuscular mycorrhizal fungus and nitrogen on maize growth and soil fertility[J].,2017,(05):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
[7]马娜,王金彦,阚家亮,等.一个响应盐胁迫的梨凝集素受体蛋白激酶PcLRLK066 的功能分析[J].江苏农业学报,2017,(02):404.[doi:doi:10.3969/j.issn.1000-4440.2017.02.026]
 MA Na,WANG Jin-yan,KAN Jia-liang,et al.Functional analysis of a salt-induced lectin receptor-like kinase PcLRLK066 of pear[J].,2017,(05):404.[doi:doi:10.3969/j.issn.1000-4440.2017.02.026]
[8]李国锋,葛敏,吕远大.Opaque2转录因子对玉米α-醇溶蛋白基因家族成员表达的影响[J].江苏农业学报,2015,(06):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
 LI Guo-feng,GE Min,L Yuan-da.Differential expression of α-zein family genes regulated by Opaque2 transcription factor[J].,2015,(05):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
[9]管莉,张阿英.CaM 与 ZmCCaMK 相互作用参与 BR 诱导的玉米叶片抗氧化防护[J].江苏农业学报,2015,(01):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
 GUAN Li,ZHANG A-ying.CaM-ZmCCaMK interaction involved in brassinosteroid-induced antioxidant defense in leaves of maize[J].,2015,(05):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
[10]王元琮,何冰,林峰,等.调控玉米阻止授粉后叶片衰老的QTL定位[J].江苏农业学报,2017,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
 WANG Yuan-cong,HE Bing,LIN Feng,et al.QTL mapping for pollination-prevention on leaf senescence[J].,2017,(05):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]

备注/Memo

备注/Memo:
收稿日期:2024-09-13基金项目:国家自然科学基金项目(32302654)作者简介:段娅敏(2000-),女,甘肃天水人,硕士研究生,主要从事玉米遗传育种研究。(E-mail)1446595629@qq.com通讯作者:王芸芸,(E-mail)008307@yzu.edu.cn
更新日期/Last Update: 2025-06-24