参考文献/References:
[1]陈淑梅,安玉富. 我国玉米种植业发展现状及方向探讨[J]. 中国农业信息,2012,24(19):97.
[2]SKIRYCZ A, INZ D. More from less:plant growth under limited water[J]. Current Opinion in Biotechnology,2010,21(2):197-203.
[3]CRAMER G R. Abiotic stress and plant responses from the whole vine to the genes[J]. Australian Journal of Grape and Wine Research,2010,16:86-93.
[4]彭菲. UPF基因在玉米非生物胁迫抗性中的作用[D]. 济南:山东大学,2023.
[5]YANG X Y, ZHU X J, WEI J, et al. Primary root response to combined drought and heat stress is regulated via salicylic acid metabolism in maize[J]. BMC Plant Biology,2022,22(1):417.
[6]关淑艳,姜青平,韩利圆,等. 生物育种在玉米逆境胁迫中的研究进展[J]. 吉林农业大学学报,2024,46(1):1-9.
[7]吴祖葵,杨敬华,刘勍. 我国玉米主产省自然灾害灾情分析[J]. 中国农业资源与区划,2018,39(3):9-17.
[8]葛瑶,栾明鉴,张雪楠,等. 中国盐生植物分布与盐碱地类型的关系[J]. 齐鲁工业大学学报,2021,35(2):14-20.
[9]张鹏钰. ZmRL6在玉米幼苗期应答干旱胁迫中的功能及机制解析[D]. 郑州:河南农业大学,2021.
[10]MENG Y T, HUANG J, JING H K, et al. Exogenous abscisic acid alleviates Cd toxicity in Arabidopsis thaliana by inhibiting Cd uptake,translocation and accumulation,and promoting Cd chelation and efflux[J]. Plant Science,2022,325:111464.
[11]ABLEY K, FORMOSA-JORDAN P, TAVARES H, et al. An ABA-GA bistable switch can account for natural variation in the variability of Arabidopsis seed germination time[J]. Elife,2021,10:e59485.
[12]贺正华. ZmPYL及ZmPP2C-A家族基因调控玉米非生物胁迫应答的功能及自然变异研究[D]. 武汉:华中农业大学, 2021.
[13]ZHU J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology,2002,53:247-273.
[14]SHAO H B, WANG H Y, TANG X L. NAC transcription factors in plant multiple abiotic stress responses:progress and prospects[J]. Frontiers in Plant Science,2015,6:902.
[15]MAHAJAN S, TUTEJA N. Cold,salinity and drought stresses:an overview[J]. Archives of Biochemistry and Biophysics,2005,444(2):139-158.
[16]QIN F, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Achievements and challenges in understanding plant abiotic stress responses and tolerance[J]. Plant & Cell Physiology,2011,52(9):1569-1582.
[17]WANG H Y, WANG H L, SHAO H B, et al. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology[J]. Frontiers in Plant Science,2016,7:67.
[18]KIM D, LANGMEAD B, SALZBERG S L. HISAT:a fast spliced aligner with low memory requirements[J]. Nature Methods,2015,12(4):357-360.
[19]董菁,张春宵,刘学岩,等. 玉米苗期根部比较转录组分析揭示耐盐性差异机制[J]. 玉米科学,2023,31(6):30-40.
[20]陈东滨,王茜茜,孙智仪,等. 玉米ZmXTH23的克隆、表达及其对盐胁迫和干旱胁迫的响应[J]. 农业生物技术学报,2019,27(9):1533-1541.
[21]LI P C, CAO W, FANG H M, et al. Transcriptomic profiling of the maize (Zea mays L.) leaf response to abiotic stresses at the seedling stage[J]. Frontiers in Plant Science,2017,8:290.
[22]PELEG Z, BLUMWALD E. Hormone balance and abiotic stress tolerance in crop plants[J]. Current Opinion in Plant Biology,2011,14(3):290-295.
[23]CHEN K, LI G J, BRESSAN R A, et al. Abscisic acid dynamics,signaling,and functions in plants[J]. Journal of Integrative Plant Biology,2020,62(1):25-54.
[24]NAMBARA E, MARION-POLL A. Abscisic acid biosynthesis and catabolism[J]. Annual Review of Plant Biology,2005,56:165-185.
[25]CHAN Z L. Expression profiling of ABA pathway transcripts indicates crosstalk between abiotic and biotic stress responses in Arabidopsis[J]. Genomics,2012,100(2):110-115.
[26]SHAN X H, LI Y D, JIANG Y, et al. Transcriptome profile analysis of maize seedlings in response to high-salinity,drought and cold stresses by deep sequencing[J]. Plant Molecular Biology Reporter,2013,31(6):1485-1491.
[27]SHI G X, HUANG F, GONG Y, et al. RNA-Seq analysis reveals that multiple phytohormone biosynthesis and signal transduction pathways are reprogrammed in curled-cotyledons mutant of soybean (Glycine max (L.) Merr)[J]. BMC Genomics,2014,15(1):510.
[28]SONG Y P, CI D, TIAN M, et al. Comparison of the physiological effects and transcriptome responses of Populus simonii under different abiotic stresses[J]. Plant Molecular Biology,2014,86(1/2):139-156.
[29]MIAO Z Y, XU W, LI D F, et al. De novo transcriptome analysis of Medicago falcata reveals novel insights about the mechanisms underlying abiotic stress-responsive pathway[J]. BMC Genomics,2015,16:818.
[30]SHANKAR R, BHATTACHARJEE A, JAIN M. Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses[J]. Scientific Reports,2016,6:23719.
[31]TAN B C, SCHWARTZ S H, ZEEVAART J A, et al. Genetic control of abscisic acid biosynthesis in maize[J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94(22):12235-12240.
[32]IUCHI S, KOBAYASHI M, TAJI T, et al. Regulation of drought tolerance by gene manipulation of 9-Cis-epoxycarotenoid dioxygenase,a key enzyme in abscisic acid biosynthesis in Arabidopsis[J]. The Plant Journal,2001,27(4):325-333.
[33]XIONG L, ISHITANI M, LEE H, et al. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression[J]. The Plant Cell,2001,13(9):2063-2083.
[34]FINKELSTEIN R. Abscisic acid synthesis and response[J]. The Arabidopsis Book,2013,11:e0166.
[35]FAN W Q, ZHAO M Y, LI S X, et al. Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots[J]. BMC Plant Biology,2016,16:99.
[36]GOLLDACK D, LKING I, YANG O. Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network[J]. Plant Cell Reports,2011,30(8):1383-1391.
[37]DU H W, HUANG M, ZHANG Z X, et al. Genome-wide analysis of the AP2/ERF gene family in maize waterlogging stress response[J]. Euphytica,2014,198(1):115-126.
[38]GOLLDACK D, LKING I, YANG O. Plant tolerance to drought and salinity:stress regulating transcription factors and their functional significance in the cellular transcriptional network[J]. Plant Cell Reports,2011,30(8):1383-1391.
[39]DU H W, HUANG M, ZHANG Z X, et al. Genome-wide analysis of the AP2/ERF gene family in maize waterlogging stress response[J]. Euphytica,2014,198(1):115-126.
[40]RABINOWICZ P D, BRAUN E L, WOLFE A D, et al. Maize R2R3 Myb genes:sequence analysis reveals amplification in the higher plants[J]. Genetics,1999,153(1):427-444.
[41]MA L F, HU L X, FAN J B, et al. Cotton GhERF38 gene is involved in plant response to salt/drought and ABA[J]. Ecotoxicology,2017,26(6):841-854.
[42]TANG Y H, BAO X X, ZHI Y L, et al. Overexpression of a MYB family gene,OsMYB6,increases drought and salinity stress tolerance in transgenic rice[J]. Frontiers in Plant Science,2019,10:168.
[43]HE Y N, LI W, LV J, et al. Ectopic expression of a wheat MYB transcription factor gene,TaMYB73,improves salinity stress tolerance in Arabidopsis thaliana[J]. Journal of Experimental Botany,2012,63(3):1511-1522.
[44]CASARETTO J A, EL-KEREAMY A, ZENG B, et al. Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance[J]. BMC Genomics,2016,17:312.
[45]朱叶青. 玉米转录因子ZmMYB39的耐旱功能与作用机制研究[D]. 武汉:长江大学,2022.
[46]MA H Z, LIU C, LI Z X, et al. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development[J]. Plant Physiology,2018,178(2):753-770.
[47]YING S, ZHANG D F, FU J, et al. Cloning and characterization of a maize bZIP transcription factor,ZmbZIP72,confers drought and salt tolerance in transgenic Arabidopsis[J]. Planta,2012,235(2):253-266.
相似文献/References:
[1]宝华宾,梁帅强,吕远大,等.玉米籽粒蛋白含量Meta-QTL及候选基因分析[J].江苏农业学报,2016,(04):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
BAO Hua-bin,LIANG Shuai-qiang,LYU Yuan- da,et al.Analysis of meta-QTL and candidate genes related to protein concentration in maize grain[J].,2016,(05):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
[2]印志同,秦秋霞,阚欣,等.玉米快速叶绿素荧光参数全基因组关联分析[J].江苏农业学报,2016,(04):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
YIN Zhi-tong,QIN Qiu-xia,KAN Xin,et al.Genome-wide association analysis of fast chlorophyll fluorescence parameters in maize[J].,2016,(05):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
[3]岳海旺,陈淑萍,彭海成,等.玉米籽粒灌浆特性品种间比较[J].江苏农业学报,2016,(05):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
YUE Hai-wang,CHEN Shu-ping,PENG Hai-cheng,et al.Grain filling characteristics in maize materials[J].,2016,(05):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
[4]周玲,梁帅强,林峰,等.玉米二态性 InDel 位点的鉴定和分子标记开发[J].江苏农业学报,2016,(06):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
ZHOU Ling,LIANG Shuai-qiang,LIN Feng,et al.Biallelic InDel loci detection and molecular marker development in maize[J].,2016,(05):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
[5]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(05):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[6]江彬,毕银丽,申慧慧,等.氮营养与AM真菌协同对玉米生长及土壤肥力的影响[J].江苏农业学报,2017,(02):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
JIANG Bin,BI Yin-li,SHEN Hui-hui,et al.Synergetic effects of Arbuscular mycorrhizal fungus and nitrogen on maize growth and soil fertility[J].,2017,(05):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
[7]马娜,王金彦,阚家亮,等.一个响应盐胁迫的梨凝集素受体蛋白激酶PcLRLK066 的功能分析[J].江苏农业学报,2017,(02):404.[doi:doi:10.3969/j.issn.1000-4440.2017.02.026]
MA Na,WANG Jin-yan,KAN Jia-liang,et al.Functional analysis of a salt-induced lectin receptor-like kinase PcLRLK066 of pear[J].,2017,(05):404.[doi:doi:10.3969/j.issn.1000-4440.2017.02.026]
[8]李国锋,葛敏,吕远大.Opaque2转录因子对玉米α-醇溶蛋白基因家族成员表达的影响[J].江苏农业学报,2015,(06):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
LI Guo-feng,GE Min,L Yuan-da.Differential expression of α-zein family genes regulated by Opaque2 transcription factor[J].,2015,(05):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
[9]管莉,张阿英.CaM 与 ZmCCaMK 相互作用参与 BR 诱导的玉米叶片抗氧化防护[J].江苏农业学报,2015,(01):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
GUAN Li,ZHANG A-ying.CaM-ZmCCaMK interaction involved in brassinosteroid-induced antioxidant defense in leaves of maize[J].,2015,(05):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
[10]王元琮,何冰,林峰,等.调控玉米阻止授粉后叶片衰老的QTL定位[J].江苏农业学报,2017,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
WANG Yuan-cong,HE Bing,LIN Feng,et al.QTL mapping for pollination-prevention on leaf senescence[J].,2017,(05):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]