[1]孙计平,王亚乐,李雪君,等.基于转录组测序筛选烟草响应疫霉侵染的候选基因[J].江苏农业学报,2025,(03):457-467.[doi:doi:10.3969/j.issn.1000-4440.2025.03.004]
 SUN Jiping,WANG Yale,LI Xuejun,et al.Screening of candidate genes in response of tobacco to Phytophthora nicotianae infection based on transcriptome sequencing[J].,2025,(03):457-467.[doi:doi:10.3969/j.issn.1000-4440.2025.03.004]
点击复制

基于转录组测序筛选烟草响应疫霉侵染的候选基因()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年03期
页码:
457-467
栏目:
遗传育种·生理生化
出版日期:
2025-03-31

文章信息/Info

Title:
Screening of candidate genes in response of tobacco to Phytophthora nicotianae infection based on transcriptome sequencing
作者:
孙计平王亚乐李雪君平文丽孙焕
(河南省农业科学院烟草研究所,河南许昌461000)
Author(s):
SUN JipingWANG YaleLI XuejunPING WenliSUN Huan
(Tobacco Research Institute, Henan Academy of Agricultural Sciences, Xuchang 461000, China)
关键词:
转录组疫霉河洛1号烟草
Keywords:
transcriptomePhytophthora nicotianaeHeluo No.1tobacco
分类号:
S572;S435.72
DOI:
doi:10.3969/j.issn.1000-4440.2025.03.004
文献标志码:
A
摘要:
疫霉属真菌是主要的植物病原菌,会对很多作物造成毁灭性伤害,为挖掘烟草响应疫霉侵染的候选基因,用烟草疫霉菌侵染河洛1号幼苗,通过转录组测序技术,对疫霉菌侵染前与侵染后24 h和48 h的差异表达基因(DEG)进行基因本体(GO)和京都基因与基因组百科全书(KEGG)富集分析,并利用实时定量聚合酶链反应(qRT-PCR)技术验证。结果表明,疫霉菌侵染后24 h和48 h分别筛选出DEG 4 563个和14 053个,共同变化的基因3 623个,其中1 502个上调差异表达基因被GO基因组注释,主要富集在谷胱甘肽代谢过程和蛋白质磷酸化生物学过程;787个下调差异表达基因被GO基因组注释,主要富集在转录调控。KEGG富集分析结果显示,差异表达基因主要富集在植物-丝裂原活化蛋白激酶信号通路、植物激素信号转导通路和植物-病原菌互作通路。植物-病原菌互作通路中FLS2上调促进MEKK1磷酸化,诱导蛋白激酶MPK4,引起WRKY12持续下调表达,WRKY9、WRKY24、WRKY26、WRKY31、WRKY33、WRKY40持续上调表达;诱导蛋白激酶MPK3/6表达,引起WRKY11、WRKY15、WRKY17和WRKY41上调表达,导致PR-1基因持续下调表达,河洛1号植株感病。
Abstract:
Phytophthora fungi are important plant pathogens that cause devastating damage to many crops. To identify candidate genes in tobacco that respond to Phytophthora nicotianae infection, seedlings of Heluo No.1 were infected with Phytophthora nicotianae. Differential expression genes (DEGs) before infection and 24 h, 48 h after infection were analyzed by Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, based on transcriptome sequencing. The results were verified by quantitative real-time polymerase chain reaction (qRT-PCR). The results indicated that 4 563 DEGs and 14 053 DEGs were identified at 24 h and 48 h post-infection, respectively, with 3 623 genes showing common changes. Among them, 1 502 up-regulated DEGs were annotated by GO genome, mainly enriched in glutathione metabolism process and protein phosphorylation biological process. A total of 787 down-regulated DEGs were annotated by GO genome, mainly enriched in transcriptional regulation. KEGG enrichment analysis showed that DEGs were primarily enriched in the plant-mitogen activated protein kinase signaling pathway, plant hormone signal transduction pathway and plant-pathogen interaction pathway. In the plant-pathogen interaction pathway, the up-regulation of FLS2 promoted the phosphorylation of MEKK1, which induced the expression of protein kinase MPK4, caused the continuous down-regulation of WRKY12 and the continuous up-regulation of WRKY9, WRKY24, WRKY26, WRKY31, WRKY33 and WRKY40. Besides, the expression of protein kinases MPK3/6 was induced, leading to the up-regulation of WRKY11, WRKY15, WRKY17 and WRKY41, and the continuous down-regulation of the PR-1 gene. As a result, Heluo No.1 plants were more susceptible to Phytophthora nicotianae infection.

参考文献/References:

[1]汪平. 剑麻受烟草疫霉侵染后转录组测序分析[D]. 海口:海南大学,2014.
[2]李逸文,王林焰,陈豪琦,等. 2015-2023年1406份大豆品种(系)对大豆疫霉的抗性评价[J/OL]. 南京农业大学学报,2024:1-8
[2024-02-29]. https://link.cnki.net/urlid/32.1148.S.20240110.1734.002.html.
[3]田峰奇,王路遥,董莎萌. 马铃薯与致病疫霉互作研究进展与展望[J]. 植物保护,2023,49(5):89-110,126.
[4]GRNWALD N J, GOSS E M, PRESS C M. Phytophthora ramorum: a pathogen with a remarkably wide host range causing sudden oak death on oaks and ramorum blight on woody ornamentals[J]. Molecular Plant Pathology,2008,9(6):729-740.
[5]刘艳艳,丁颖,刘兴华,等. 辣椒CaSYT1的鉴定及其在疫霉侵染过程中的功能初探[J]. 园艺学报,2024,51(3):533-544.
[6]杜天宇. 烟草抗黑胫病转录与调控机制研究[D]. 杭州:浙江大学,2022.
[7]张纯,唐承晨,王吉永,等. 转录组学在植物应答逆境胁迫中的研究进展[J]. 生物学杂志,2017,34(2):86-90.
[8]张燕梅,赵艳龙,李俊峰,等. 剑麻与烟草疫霉互作过程中的转录组研究[J]. 热带作物学报,2018,39(3):540-546.
[9]竹龙鸣. 大豆对大豆疫霉菌侵染响应的转录组学和代谢组学研究[D]. 南京:南京农业大学,2018.
[10]卢珍红,原晓龙,李绅崇,等. 非洲菊对隐地疫霉侵染响应WRKY转录因子的鉴定及表达分析[J/OL]. 分子植物育种,2024:1-10
[2023-10-25]. http://kns-cnki-net.webvpn.hnagri.org.cn/kcms/detail/46.1068.S.20231025.1320.008.html.
[11]MENG H, SUN M M, JIANG Z P, et al. Comparative transcriptome analysis reveals resistant and susceptible genes in tobacco cultivars in response to infection by Phytophthora nicotianae[J]. Scientific Reports,2021,11(1):809.
[12]LI H Y, WANG H N, JING M F, et al. A Phytophthora effector recruits a host cytoplasmic transacetylase into nuclear speckles to enhance plant susceptibility[J]. eLife,2018,7:1-23.
[13]张豫丹,马晓寒,李俊领,等. 绿原酸对烟草疫霉的抑制作用及对烟草黑胫病的防治效果研究[J]. 作物杂志,2022(2):230-236.
[14]CENN M C, KO K, CHANG W L, et al.Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis[J]. The Plant Journal,2015,83(5):926-939.
[15]GOMEZ L D, VANACKER H, BUCHNER P, et al. Intercellular distribution of glutathione synthesis in maize leaves and its response to short-term chilling[J]. Plant Physiology,2004,134(4):1662-1671.
[16]SWARNALOK D, GABRIELA C C, WAHLSTEN M, et al. Disruption of the methionine cycle and reduced cellular gluthathione levels underlie potex-potyvirus synergism in Nicotiana benthamiana[J]. Molecular Plant Pathology,2018,19(8):1820-1835.
[17]MUKAIHARA T, HATANAKA T, NAKANO M, et al. Ralstonia solanacearum type Ⅲ effector RipAY is a glutathione-degrading enzyme that is activated by plant cytosolic thioredoxins and suppresses plant immunity[J]. Microbiology,2016,7(2):1-14.
[18]ZECHMANN B. Subcellular roles of glutathione in mediating plant defense during biotic stress[J]. Plants,2020,9(9):1067.
[19]ZHU F, ZHANG Q P, CHE Y P, et al. Glutathione contributes to resistance responses to TMV through a differential modulation of salicylic acid and reactive oxygen species[J]. Molecular Plant Pathology,2021,22(12):1668-1687.
[20]王斌,杨盼迪,王玉昆,等. 采后黄瓜在冷驯化处理过程中的转录组变化[J]. 西北农业学报,2024,33(2):256-270.
[21]刘 潮,韩利红,褚洪龙,等. 植物与病原菌互作的分子机制研究进展[J]. 生物学通报,2018,45(10):2271-2279.
[22]DODDS P N,RATHJEN J P. Plant immunity: towards an integrated view of plant-pathogen interactions[J]. Nature Reviews Genetics,2010,11(8):539-548.
[23]曲硕,焦耀磊,付加禹,等. 抗病基因PR1在大豆中的遗传转化与多抗材料的培育[J]. 分子植物育种,2023,21(1):174-184.
[24]刘婉迪. 中国野生毛葡萄芪合酶基因家族新成员抗白粉病机制研究[D]. 杨凌:西北农林科技大学,2023.
[25]FREY N F, GARCIA A V, BIGEARD J, et al. Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences[J]. Genome Biology,2014,15(6):87.
[26]FELIX G, DURAN J D, VOLKO S, et al. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin[J]. The Plant Jounal,1999,18(3):265-276.
[27]ASAI T, TENA G, PLOTNIKOVA J, et al. MAP kinanse signaling cascade in Arabidopsis innate immunity[J]. Nature,2002,415(6875):977-983.
[28]王淑叶,伍国强,魏明. WRKY转录因子调控植物逆境胁迫响应的作用机制[J]. 生物工程学报,2024,40(1):35-52.
[29]李爽,熊樱,RALF M X,等. 转录因子WRKY6和PR1在拟南芥胁迫记忆中的表达模式[J]. 植物研究,2019,39(5):752-759.
[30]黄幸,丁峰,彭宏祥,等. 植物WRKY转录因子家族研究进展[J]. 生物技术通报,2019,35(12):129-143.
[31]向小华,吴新儒,晁江涛,等. 普通烟草WRKY基因家族的鉴定及表达分析[J]. 遗传,2016,38(9):840-862.
[32]却枫,刘庆楠,查若飞,等. 孝顺竹中笋箨衰老相关WRKY转录因子的鉴定与分析[J]. 南京林业大学学报(自然科学版),2023,47(6):113-123.
[33]朱飞雪,程玉江,郭丽. 蝴蝶兰WRKY57基因的克隆、亚细胞定位及响应脱落酸功能分析[J]. 江苏农业科学,2023,51(18):54-62.
[34]陈娜,邵勤,李晓鹏. 番茄WRKY转录因子功能的研究进展[J]. 江苏农业科学,2023,51(13):6-17.
[35]ZHENG Z Y, MOSHER S L, FAN B F, et al. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae[J]. BMC Plant Biology,2007,7:2.
[36]KIM K C, LAI Z B,FAN B F, et al. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense[J]. The Plant Cell,2008,20(9):2357-2371.
[37]JOURNOT-CATALINO N, SOMSSICH I E, ROBY D, et al. The transcription factors WRKY11 and WRKY17 act as negative ragulators of Basal resistance in Arabidopsis thaliana[J]. The Plant Cell,2006,18(11):3289-3302.
[38]KIM K C, FAN B F, CHEN Z X, et al. Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae[J]. Plant Physiology,2006,142(3):1180-1192.
[39]LIU F, LI X X, WANG M R,et al. Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection[J]. Plant Biotechnology Journal,2018,16(4):911-925.
[40]沙仁和,兰黎明,王三红,等. 苹果转录因子MdWRKY40b抗白粉病的机理[J]. 中国农业科学,2021,54(24):5220-5229.
[41]SHAN D Q,WANG C Y, ZHENG X D, et al. MKK4-MPK3-WRKY17-mediated salicylic acid degradation increases susceptibility to Glomerella leaf spot in apple[J]. Plant Physiology,2021,186(2):1202-1219.
[42]杨敏,李庆萌,周陈平,等,番木瓜WRKY转录因子CpWRKY11的克隆和表达[J]. 西北农林科技大学学报,2023,51(5):119-130,138.
[43]HIGASHI K, ISHIGA Y, INAGAKI Y, et al. Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana[J]. Molecular Genetics Genomics,2008,279(3):303-312.
[44]董悦,王远达,王志敏,等. WRKY12调控植物发育的分子机制[J]. 生物工程学报,2021,37(1):142-148.

相似文献/References:

[1]吴阳升,林嘉鹏,汪立芹,等.绵羊小卵泡与中卵泡转录组差异特征分析[J].江苏农业学报,2016,(04):832.[doi:10.3969/j.issn.100-4440.2016.04.019]
 WU Yang-sheng,LIN Jia-peng,WANG Li-qin,et al.Transcriptome profiling of ovine follicles during growth from small to middle antral sizes[J].,2016,(03):832.[doi:10.3969/j.issn.100-4440.2016.04.019]
[2]高弢,史建荣.基于高通量测序技术分析麝香草酚处理禾谷镰孢菌后转录组学的变化[J].江苏农业学报,2017,(06):1257.[doi:doi:10.3969/j.issn.1000-4440.2017.06.009]
 GAO Tao,SHI Jian-rong.Transcriptome analysis of Fusarium graminearum treated with thymol based on high-throughput sequencing technology[J].,2017,(03):1257.[doi:doi:10.3969/j.issn.1000-4440.2017.06.009]
[3]陈春林,田易萍,陈林波,等.基于荧光标记的紫娟茶树转录组EST-SSR标记开发[J].江苏农业学报,2018,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
 CHEN Chun-lin,TIAN Yi-ping,CHEN Lin-bo,et al.EST-SSR marker development of Zijuan tea tree transcriptome based on the fluorescent labeling[J].,2018,(03):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
[4]王莹,李玉娟,李敏,等.紫叶紫薇新品系叶色变化转录组分析[J].江苏农业学报,2018,(05):1128.[doi:doi:10.3969/j.issn.1000-4440.2018.05.023]
 WANG Ying,LI Yu-juan,LI Min,et al.Transcriptome analysis of a new strain of purple-leaf crape myrtle (Lagerstroemia indica) during leaves color changes[J].,2018,(03):1128.[doi:doi:10.3969/j.issn.1000-4440.2018.05.023]
[5]贺丹,吴芳芳,张佼蕊,等.牡丹转录组SSR信息分析及其分子标记开发[J].江苏农业学报,2019,(06):1428.[doi:doi:10.3969/j.issn.1000-4440.2019.06.023]
 HE Dan,WU Fang-fang,ZHANG Jiao-rui,et al.Analysis of SSR information in transcriptome and development of molecular markers in Paeonia suffruticosa[J].,2019,(03):1428.[doi:doi:10.3969/j.issn.1000-4440.2019.06.023]
[6]王江英,朱朋波,汤雪燕,等.外源赤霉素诱导矮生山茶恨天高植株生长的转录组分析[J].江苏农业学报,2020,(01):47.[doi:doi:10.3969/j.issn.1000-4440.2020.01.007]
 WANG Jiang-ying,ZHU Peng-bo,TANG Xue-yan,et al.Transcriptome profiling of plant height growth in Camellia reticulata Hentiangao induced by exogenous gibberellin[J].,2020,(03):47.[doi:doi:10.3969/j.issn.1000-4440.2020.01.007]
[7]梁文化,孙旭超,岳红亮,等.水稻超大籽粒形成的重要基因和调控通路的转录组分析[J].江苏农业学报,2020,(04):801.[doi:doi:10.3969/j.issn.1000-4440.2020.04.001]
 LIANG Wen-hua,SUN Xu-chao,YUE Hong-liang,et al.Transcriptome analysis on critical genes and key pathways in extra-large grain development of rice[J].,2020,(03):801.[doi:doi:10.3969/j.issn.1000-4440.2020.04.001]
[8]马杰,屈雯,陈春艳,等.基于转录组序列的羊肚菌EST-SSR标记开发与遗传多样性分析[J].江苏农业学报,2020,(05):1282.[doi:doi:10.3969/j.issn.1000-4440.2020.05.027]
 MA Jie,QU Wen,CHEN Chun-yan,et al.Development of EST-SSR markers based on transcriptome sequencing of Morchella spp. and its genetic diversity analysis[J].,2020,(03):1282.[doi:doi:10.3969/j.issn.1000-4440.2020.05.027]
[9]姚启伦,霍仕平,张俊军.玉米自交系响应高温、干旱胁迫的关键基因及通路[J].江苏农业学报,2021,(01):29.[doi:doi:10.3969/j.issn.1000-4440.2021.01.004]
 YAO Qi-lun,HUO Shi-ping,ZHANG Jun-jun.Key genes and pathways of maize inbred lines responding to heat and drought stress[J].,2021,(03):29.[doi:doi:10.3969/j.issn.1000-4440.2021.01.004]
[10]张斌,杨昕霞,袁志辉.水稻响应热胁迫核心基因的筛选与鉴定[J].江苏农业学报,2021,(04):817.[doi:doi:10.3969/j.issn.1000-4440.2021.04.001]
 ZHANG Bin,YANG Xin-xia,YUAN Zhi-hui.Screening and identification of core genes responding to heat stress in rice[J].,2021,(03):817.[doi:doi:10.3969/j.issn.1000-4440.2021.04.001]

备注/Memo

备注/Memo:
收稿日期:2024-05-22基金项目:河南省烟草公司洛阳市公司科技项目(2022410300200053);河南省农业科学院基础性科研工作项目(2024JC09)作者简介:孙计平(1978-),女,河北玉田人,博士,副研究员,研究方向为烟草遗传育种。(E-mail)sunjiping2002@126.com
更新日期/Last Update: 2025-04-27