[1]王江英,朱朋波,汤雪燕,等.外源赤霉素诱导矮生山茶恨天高植株生长的转录组分析[J].江苏农业学报,2020,(01):47-56.[doi:doi:10.3969/j.issn.1000-4440.2020.01.007]
 WANG Jiang-ying,ZHU Peng-bo,TANG Xue-yan,et al.Transcriptome profiling of plant height growth in Camellia reticulata Hentiangao induced by exogenous gibberellin[J].,2020,(01):47-56.[doi:doi:10.3969/j.issn.1000-4440.2020.01.007]
点击复制

外源赤霉素诱导矮生山茶恨天高植株生长的转录组分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年01期
页码:
47-56
栏目:
遗传育种·生理生化
出版日期:
2020-02-29

文章信息/Info

Title:
Transcriptome profiling of plant height growth in Camellia reticulata Hentiangao induced by exogenous gibberellin
作者:
王江英1朱朋波1汤雪燕1孙明伟1葛金涛1赵统利1李纪元2惠林冲1邵小斌1
(1.连云港市农业科学院花卉研究中心,江苏连云港222000;2.中国林业科学研究院亚热带林业研究所/浙江省林木育种技术研究重点实验室,浙江杭州311400)
Author(s):
WANG Jiang-ying1ZHU Peng-bo1TANG Xue-yan1SUN Ming-wei1GE Jin-tao1ZHAO Tong-li1LI Ji-yuan2HUI Lin-chong1SHAO Xiao-bin1
(1.Lianyungang Academy of Agricultural Sciences, Flower Research Center, Lianyungang 222000, China;2.Research Institute of Subtropical Forestry of Chinese Academy of Forestry/Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China)
关键词:
矮生恨天高赤霉素转录组差异表达基因
Keywords:
Camellia reticulata Hentiangaogibberellintranscriptomedifferentially expressed genes
分类号:
S685.14
DOI:
doi:10.3969/j.issn.1000-4440.2020.01.007
文献标志码:
A
摘要:
对0 mg/L、800 mg/L赤霉素处理的矮生山茶恨天高叶片、茎段和茎尖进行了Illumina HiSeq高通量转录组测序,共获得476 635个Unigenes,其中181 115(38.00%)个Unigenes获得了注释;差异基因分析发现了43 624个差异基因,其中包括43 295个特异的和329个共同的差异基因;GO和KEGG富集分析结果显示,恨天高叶片增大、茎段伸长及茎尖生长与糖代谢、苯丙烷生物合成代谢相关;茎尖生长还与植物激素信号传导和二萜生物合成有关。通过赤霉素处理后恨天高叶片、茎段、茎尖转录组分析发现,茎尖组织中参与赤霉素生物合成的KAO、GA20ox、GA3ox和GA2ox基因表达量发生变化,赤霉素信号传导过程中DELLA蛋白调控以及赤霉素和生长素、细胞分裂素等其他激素间的互作促进恨天高植株生长。
Abstract:
Illumina HiSeq high-throughput sequencing was performed on the leaves, stem segments and shoot tips of Camellia reticulata Hentiangao treated with mg/L0 and 800 mg/L gibberellin, respectively. A total of 476 635 unigenes were obtained, and 181 115 (38.00%) of them were annotated. In addition, 43 624 differentially expressed genes (DEGs), including 43 295 unique and 329 common, were identified. GO and KEGG enrichment analysis results showed that leaf enlargement, stem elongation and shoot tip growth were related to glucose metabdism and phenylpropanoid biosynthesis. Furthermore, many DEGs in shoot tip growth were involved in plant hormone signal transduction and diterpenoid biosynthesis. According to the transcriptome analysis, three factors were found to promote the growth of Hentiangao. The first was the expression changes of KAO, GA20ox, GA3ox and GA2ox genes involved in gibberellin biosynthesis in shoot tips. The second was the regulation of DELLA protein in gibberellin signal transduction. The third was the interaction of gibberellin with auxin, cytokinin and other hormones.

参考文献/References:

[1]RICHAEDS D E, KING K E, AIT-ALI T, et al. How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling [J]. Annual Review of Plant Biology, 2001, 52: 67-88.
[2]张旭红,孙美玉,李靖锐,等. 东方百合‘索邦’GA20ox的克隆及表达分析[J]. 园艺学报, 2019, 46(1): 74-86.
[3]YAMAGUCHI S. Gibberellin metabolism and its regulation [J]. Annual Review of Plant Biology, 2008, 59: 225-251.
[4]DAVIDSON S E, ELLIOTT R C, HELLIWELL C A, et al. The pea gene NA encodes ent-kaurenoic acid oxidase [J]. Plant Physiology, 2003, 131(1): 335-344.
[5]LANGE T, HEDDEN P, GRAEBE J E. Expression cloning of a gibberellin 20-oxidase, a multifunctional enzyme involved in gibberellin biosynthesis [J]. Proceedings of the National Academy of Sciences, 1994, 91(18): 8522-8566.
[6]APPLEFORD N E J, LENTON J R. Gibberellins and leaf expansion in near-isogenic wheat lines containing Rht1 and Rhe3 dwarfing alleles [J]. Planta, 1991, 183(2): 229-236.
[7]COLES J P, PHILLIPS A L, CROKER S J, et al. Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes [J]. The Plant Journal, 1999, 17(5): 547-563.
[8]SAKAMOTO T, MIURA K, ITOH H, et al. An overview of gibberellin metabolism enzyme genes and their related mutants in rice [J]. Plant Physiology, 2004, 134(4): 1642-1653.
[9]欧春青,姜淑苓,王斐,等. 梨贝壳杉烯酸氧化酶基因PcKAO1的克隆与表达分析[J]. 园艺学报, 2013, 40(5): 849-858.
[10]WANG J Y, WU B, LI J Y, et al. Overexpression and silent expression of CrGA20ox1 from Camellia reticulate ‘Hentiangao’ and its effect on morphological alterations in transgenic tobacco plants [J]. Plant Breeding, 2018, 9(3): 1-9.
[11]HUANG Y, WANG X, GE S, et al. Divergence and adaptive evolution of the gibberellin oxidase genes in plants [J]. BMC Evolutionary Biology, 2015, 15: 207-221.
[12]THOMAS S G, PHILLIPS A L, HEDDEN P. Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation [J]. Proceedings of the National Academy of Sciences, 1999, 96(8): 4698-4703.
[13]李巧峡,张丽,王玉,等. 赤霉素调控植物开花及器官发育的研究进展[J]. 中国细胞生物学学报, 2019, 41(4): 746-758.
[14]WILLIGE B C, GHOSH S, NILL C, et al. The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis [J]. The Plant Cell, 2007, 19(4): 1209-1220.
[15]DILL A, THOMAS S G, HU J, et al. The Arabidopsis F-Box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation [J]. The Plant Cell, 2004, 16(6): 1392-1405.
[16]SUN T P. Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development [J]. Plant Physiology, 2010, 154(2): 567-570.
[17]CHEN J H, CHENG T L, WANG P K, et al. Genome-wide bioinformatics analysis of DELLA-family proteins from plants [J]. Plant Omics, 2013, 6(3): 201-207.
[18]张文颖,王晨,朱旭东. 葡萄全基因组DELLA 蛋白基因家族鉴定及其应答外源赤霉素调控葡萄果实发育的特征[J]. 中国农业科学, 2018, 51(16): 3130-3146.
[19]LI W J, ZHANG J X, SUN H Y. FveRGA1, encoding a DELLA protein, negatively regulates runner production in Fragaria vesca [J]. Planta, 2018, 247(4): 941-951.
[20]贾永鹏,李开祥,昝领兄,等. 甘蓝型油菜全基因组DELLA蛋白基因家族的鉴定和表达分析[J]. 中国油料作物学报, 2019, 41(3): 360-368.
[21]管开云.中国茶花图鉴[M]. 杭州: 浙江科学技术出版社, 2014:53-54.
[22]张恩亮,马玲玲,杨如同,等. IBA诱导楸树嫩枝扦插不定根发育的转录组分析[J]. 林业科学, 2018, 54(5): 48-61.
[23]WANG Y, WEATHERS P J. Sugar proportionately affect artemisinin production [J]. Plant Cell Report, 2007, 26(7): 1073-1081.
[24]HU Y L, GAI Y, YIN L, et al. Crystal structures of a Populus tomentosa 4- coumarate: CoA ligase shed light on its enzymatic mechanisms[J]. Plant Cell, 2010,22(9):3093-3104.
[25]ITOH H, UEGUCHI-TANAKA M, SATO Y, et al. The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei [J]. Plant Cell, 2002, 14(1): 57-70.
[26]TYLER L, THOMAS S G, HU J, et al. DELLA proteins and gibberellin regulated seed germination and floral development in Arabidopsis [J]. Plant Physiology, 2004, 135(2): 1008-1019.
[27]MITCHUM M G, YAMAGUCHI S, HANADA A, et al. Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development [J]. The Plant Journal, 2006, 45(5): 804-818.
[28]RIEU I, RUIZ-RIVERO O, FERNANDEZ-GARCIA N, et al. The gibberellin biosynthetic genes At GA20ox1 and At GA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle [J]. The Plant Journal, 2008, 53(3): 488-504.
[29]RIEU I, THOMAS S, POWERS S J, et al. Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis [J]. Plant Cell, 2008, 20(9): 2420-2436.

相似文献/References:

[1]高世敏,董阳,王武,等.葡萄赤霉素合成关键基因VvGA20ox2的克隆、亚细胞定位和表达分析[J].江苏农业学报,2018,(06):1331.[doi:doi:10.3969/j.issn.1000-4440.2018.06.019]
 GAO Shi-min,DONG Yang,WANG Wu,et al.Cloning, subcellular localization and expression analysis of the key gene VvGA20ox2 in gibberellin synthesis of grapevine[J].,2018,(01):1331.[doi:doi:10.3969/j.issn.1000-4440.2018.06.019]

备注/Memo

备注/Memo:
收稿日期:2019-08-07基金项目:连云港市财政专项(QNJJ1802)作者简介:王江英(1984-),女,江苏泰州人,博士,助理研究员,主要从事花卉分子育种研究。(E-mail)wangjiangying3401@163.com通讯作者:邵小斌,(E-mail)13851270566@163.com;汤雪燕,(E-mail)3202txy@163.com
更新日期/Last Update: 2020-03-13