[1]唐国强,刘梦云,蒋丹垚,等.基于分数阶微分的猕猴桃叶片叶绿素含量估算[J].江苏农业学报,2025,(02):335-344.[doi:doi:10.3969/j.issn.1000-4440.2025.02.014]
 TANG Guoqiang,LIU Mengyun,JIANG Danyao,et al.Estimation of kiwifruit leaf chlorophyll content based on fractional-order differential processing[J].,2025,(02):335-344.[doi:doi:10.3969/j.issn.1000-4440.2025.02.014]
点击复制

基于分数阶微分的猕猴桃叶片叶绿素含量估算()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年02期
页码:
335-344
栏目:
农业信息工程
出版日期:
2025-02-28

文章信息/Info

Title:
Estimation of kiwifruit leaf chlorophyll content based on fractional-order differential processing
作者:
唐国强刘梦云蒋丹垚宋正华常庆瑞
(西北农林科技大学资源环境学院,陕西杨凌712100)
Author(s):
TANG GuoqiangLIU MengyunJIANG DanyaoSONG ZhenghuaCHANG Qingrui
(College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China)
关键词:
猕猴桃叶绿素含量高光谱分数阶微分变换竞争自适应重加权采样
Keywords:
kiwifruitchlorophyll contenthyperspectralfractional order differential transformationscompetitive adaptive reweighted sampling
分类号:
S663.4
DOI:
doi:10.3969/j.issn.1000-4440.2025.02.014
文献标志码:
A
摘要:
叶片叶绿素含量是表征植被生长状态的重要生理生化参数,传统的叶绿素含量测定方法操作复杂且会破坏叶片组织结构,对植物造成不可逆的损伤。通过构建高精度叶绿素反演模型,可以实现对猕猴桃叶片叶绿素含量的实时无损监测。本研究采集了猕猴桃冠层的高光谱数据,并同步测定了叶片叶绿素相对含量(SPAD值)。通过对原始光谱进行分数阶微分变换(阶数为0~2,步长为0.2),结合竞争自适应重加权采样算法(CARS)筛选得到敏感波段。分别基于原始波段和敏感波段训练随机森林模型(RF)、支持向量机模型(SVR)和极限学习机模型(ELM)。结果表明,分数阶微分变换显著提高了光谱反射率与猕猴桃叶片叶绿素含量的相关性,CARS算法提升了模型精度。光谱反射率经过1.8阶微分处理后,采用CARS算法筛选出敏感波段,利用这些敏感波段训练随机森林模型,取得了最佳效果。训练后的随机森林模型在验证集上决定系数(R2)达到0.93,均方根误差(RMSE)为2.56,相对分析误差(RPD)为3.89。该研究结果可为猕猴桃叶片叶绿素含量的高精度估算提供理论依据和技术参考,对猕猴桃生长监测和精准农业管理具有重要意义。
Abstract:
The leaf chlorophyll content is an important physiological and biochemical parameter for characterizing the growth status of vegetation. Traditional methods for measuring chlorophyll content are cumbersome and destructive to leaf tissue, causing irreversible damage to plants. By constructing high-precision chlorophyll inversion models, real-time, non-destructive monitoring of chlorophyll content in kiwifruit leaves can be achieved. In this study, high-spectral data of the kiwifruit canopy were collected, and the relative chlorophyll content (SPAD) of the leaves was measured synchronously. The original spectra were subjected to fractional-order differential transformation (with orders ranging from 0 to 2 at a step size of 0.2). Subsequently, the competitive adaptive reweighted sampling algorithm (CARS) was used to identify the sensitive bands. Random forest (RF), support vector machine (SVR), and extreme learning machine (ELM) models were trained based on both the original bands and the sensitive bands. The results showed that the fractional-order differential transformation significantly enhanced the correlation between spectral reflectance and chlorophyll content in kiwifruit leaves, and the CARS algorithm improved model accuracy. After the spectral reflectance was processed by the 1.8th order differential, the sensitive bands were screened out by the CARS algorithm, and the random forest model trained using these sensitive bands achieved the best performance. The trained RF model had a determination coefficient (R2) of 0.93, a root mean square error (RMSE) of 2.56, and a relative percent deviation (RPD) of 3.89 on the validation set. The results of this study can provide a theoretical basis and technical reference for the high-precision estimation of chlorophyll content in kiwifruit leaves and are of great significance for kiwifruit growth monitoring and precision agricultural management.

参考文献/References:

[1]王烁,常庆瑞,刘梦云,等.基于高光谱遥感的棉花叶片叶绿素含量估算[J]. 中国农业大学学报,2017,22(4):16-27.
[2]陈澜,常庆瑞,高一帆,等. 猕猴桃叶片叶绿素含量高光谱估算模型研究[J]. 西北农林科技大学学报(自然科学版),2020,48(6):79-89,98.
[3]李粉玲,王力,刘京,等. 基于高分一号卫星数据的冬小麦叶片SPAD值遥感估算[J]. 农业机械学报,2015,46(9):273-281.
[4]张计育,莫正海,黄胜男,等. 21世纪以来世界猕猴桃产业发展以及中国猕猴桃贸易与国际竞争力分析[J]. 中国农学通报,2014,30(23):48-55.
[5]ANSAR A, MUHAMMAD M. Evaluating the potential of red edge position (REP) of hyperspectral remote sensing data for real time estimation of LAI & chlorophyll content of kinnow mandarin ( Citrus reticulata ) fruit orchards[J]. Scientia Horticulturae,2020,267:109326.
[6]GUO Y M, JIANG S Y, MIAO H L, et al. Ground-based hyperspectral estimation of maize leaf chlorophyll content considering phenological characteristics[J]. Remote Sensing,2024,16(12). DOI:10.3390/rs16122133.
[7]王宇,汪泓,肖玖军,等. 基于MCC-GAPLS-PLSR的辣椒叶绿素含量高光谱定量反演[J]. 江苏农业学报,2024,40(5):865-873.
[8]SONG Z H, LIU Y F, YU J R, et al. Estimation of chlorophyll content in apple leaves infected with mosaic disease by combining spectral and textural information using hyperspectral images[J]. Remote Sensing,2024,16:2190.
[9]李紫琴,王家强,李贞,等. 基于光谱指数的棉花叶片叶绿素密度估算研究[J]. 中国农业科技导报,2024,26(8):103-111.
[10]NIU L Y, GAO C Y, SUN J B, et al. Study on hyperspectral estimation model of chlorophyll content in grape leaves[J]. Agricultural Biotechnology,2018(4):55-58,61.
[11]阿热孜古力·肉孜,买买提·沙吾提,何旭刚,等. 基于多植被指数组合的棉花叶片叶绿素含量估算[J]. 干旱区研究,2023,40(11):1865-1874.
[12]符欣彤,常庆瑞,张佑铭,等. 基于Stacking集成学习的猕猴桃叶片叶绿素含量估算[J]. 干旱地区农业研究,2023,41(4):247-256.
[13]林少喆,彭致功,王春堂,等. 基于“三边”参数的冬小麦冠层SPAD值监测模型[J]. 排灌机械工程学报,2021,39(1):102-108.
[14]刘楠,杨海波,高飞,等. 基于查找表法和优化光谱指数的马铃薯叶绿素反演[J]. 中国马铃薯,2022,36(6):495-507.
[15]姜海玲,姚奕旭,洪绣超,等. 基于sg滤波去噪的时间序列谐波分析重建算法研究[J]. 吉林师范大学学报(自然科学版),2021,42(3):133-140.
[16]向友珍,王辛,安嘉琪,等. 基于分数阶微分和最优光谱指数的大豆叶面积指数估算[J]. 农业机械学报,2023,54(9):329-342.
[17]蒋宇恒,晏博,庄清源,等. 基于分数阶微分的土壤重金属锌和镍的定量反演模型研究[J]. 光谱学与光谱分析,2024,44(10):2850-2857.
[18]李铠,常庆瑞,陈倩,等. 基于连续小波变换耦合cars算法的冬小麦冠层叶片含水量估算[J]. 麦类作物学报,2023,43(2):251-258.
[19]张瑞杰,周春艳,陈辉,等. 基于GF-5B卫星的随机森林模型反演京津冀地区PM2.5[J]. 中国环境科学,2024,44(11):5961-5970.
[20]池涛,曹广溥,李丙春,等. 基于高光谱数据和SVM方法的土壤盐渍度反演[J]. 山东农业大学学报(自然科学版),2018,49(4):585-590.
[21]艾小童. 基于elm模型的极化sar土壤水分降尺度研究[J]. 地理空间信息,2023,21(7):11-15.
[22]YUAN Z R, YE Y, WEI L F, et al. Study on the optimization of hyperspectral characteristic bands combined with monitoring and visualization of pepper leaf SPAD value[J]. Sensors,2022,22(1):183.
[23]王婷婷. 基于高光谱和高分一号卫星影像的冬小麦叶绿素遥感反演[D]. 咸阳:西北农林科技大学,2019.
[24]张学工. 关于统计学习理论与支持向量机[J]. 自动化学报,2000,26(1):36-46.
[25]HAN X H, MA S F, SHI Z W, et al. A novel power transformer fault diagnosis model based on Harris-Hawks-optimization algorithm optimized kernel extreme learning machine[J]. Journal of Electrical Engineering & Technology,2022,17(3):1993-2001.

相似文献/References:

[1]安飞飞,简纯平,杨龙,等.木薯幼苗叶绿素含量及光合特性对盐胁迫的响应[J].江苏农业学报,2015,(03):500.[doi:10.3969/j.issn.1000-4440.2015.03.006]
 AN Fei-fei,JIAN Chun-ping,YANG Long,et al.Chlorophyll contents and photosynthetic characteristics of cassava seedlings in response to NaCl stress[J].,2015,(02):500.[doi:10.3969/j.issn.1000-4440.2015.03.006]
[2]张安世,司清亮,齐秀娟,等.猕猴桃种质资源的SRAP遗传多样性分析及指纹图谱构建[J].江苏农业学报,2018,(01):138.[doi:doi:10.3969/j.issn.1000-4440.2018.01.020]
 ZHANG An-shi,SI Qing-liang,QI Xiu-juan,et al.Genetic diversity and fingerprints of Actinidia germplasm resource based on SRAP markers[J].,2018,(02):138.[doi:doi:10.3969/j.issn.1000-4440.2018.01.020]
[3]孙彦坤,陈睿,李静,等.不同降雨年型下反枝苋和大豆光合特征的比较[J].江苏农业学报,2019,(03):554.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
 SUN Yan-kun,CHEN Rui,LI Jing,et al.Comparison of photosynthetic characteristics between Amaranthus retroexus and Glycine max under different annual rainfall pattern[J].,2019,(02):554.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
[4]范亚磊,赵敏,邓晟,等.侵染江苏猕猴桃的北方根结线虫(Meloidogyne hapla)形态学描述和分子特征分析[J].江苏农业学报,2021,(01):75.[doi:doi:10.3969/j.issn.1000-4440.2021.01.010]
 FAN Ya-lei,ZHAO Min,DENG Sheng,et al.Morphological description and molecular characteristic analysis on Meloidogyne hapla which infect kiwifruit in Jiangsu province[J].,2021,(02):75.[doi:doi:10.3969/j.issn.1000-4440.2021.01.010]
[5]郭松,常庆瑞,郑智康,等.基于无人机高光谱影像的玉米叶绿素含量估测[J].江苏农业学报,2022,38(04):976.[doi:doi:10.3969/j.issn.1000-4440.2022.04.014]
 GUO Song,CHANG Qing-rui,ZHENG Zhi-kang,et al.Estimation of maize chlorophyll content based on unmanned aerial vehicle (UAV) hyperspectral images[J].,2022,38(02):976.[doi:doi:10.3969/j.issn.1000-4440.2022.04.014]
[6]王宇,汪泓,肖玖军,等.基于MCC-GAPLS-PLSR的辣椒叶绿素含量高光谱定量反演[J].江苏农业学报,2024,(05):865.[doi:doi:10.3969/j.issn.1000-4440.2024.05.011]
 WANG Yu,WANG Hong,XIAO Jiujun,et al.Hyperspectral quantitative inversion of chlorophyll content in pepper based on MCC-GAPLS-PLSR[J].,2024,(02):865.[doi:doi:10.3969/j.issn.1000-4440.2024.05.011]
[7]宋子怡,常庆瑞,郑智康,等.基于高光谱和连续投影算法的猕猴桃叶片氮平衡指数的估测[J].江苏农业学报,2024,(07):1260.[doi:doi:10.3969/j.issn.1000-4440.2024.07.012]
 SONG Ziyi,CHANG Qingrui,ZHENG Zhikang,et al.Estimation of kiwifruit leaf nitrogen balance index based on hyperspectral and successive projections algorithm[J].,2024,(02):1260.[doi:doi:10.3969/j.issn.1000-4440.2024.07.012]
[8]王前菊,王宇,仲伟敏,等.基于UPLC-MS/MS的不同植物生长调节剂处理的猕猴桃果实中代谢物差异分析[J].江苏农业学报,2024,(08):1542.[doi:doi:10.3969/j.issn.1000-4440.2024.08.018]
 WANG Qianju,WANG Yu,ZHONG Weimin,et al.Difference analysis of metabolites in kiwifruit treated with different plant growth regulators based on UPLC-MS/MS[J].,2024,(02):1542.[doi:doi:10.3969/j.issn.1000-4440.2024.08.018]

备注/Memo

备注/Memo:
收稿日期:2024-10-10基金项目:国家自然科学基金项目(41701398、42071240)作者简介:唐国强(2000-),男,湖南衡阳人,硕士研究生,主要从事土地资源与空间信息技术研究。(E-mail)1813377325@qq.com通讯作者:刘梦云,(E-mail)lmy471993@163.com
更新日期/Last Update: 2025-03-27