[1]范亚磊,赵敏,邓晟,等.侵染江苏猕猴桃的北方根结线虫(Meloidogyne hapla)形态学描述和分子特征分析[J].江苏农业学报,2021,(01):75-82.[doi:doi:10.3969/j.issn.1000-4440.2021.01.010]
 FAN Ya-lei,ZHAO Min,DENG Sheng,et al.Morphological description and molecular characteristic analysis on Meloidogyne hapla which infect kiwifruit in Jiangsu province[J].,2021,(01):75-82.[doi:doi:10.3969/j.issn.1000-4440.2021.01.010]
点击复制

侵染江苏猕猴桃的北方根结线虫(Meloidogyne hapla)形态学描述和分子特征分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年01期
页码:
75-82
栏目:
植物保护
出版日期:
2021-02-28

文章信息/Info

Title:
Morphological description and molecular characteristic analysis on Meloidogyne hapla which infect kiwifruit in Jiangsu province
作者:
范亚磊12赵敏1邓晟1刘瑞显3姚焕钊4魏利辉1冯辉1
(1.江苏省农业科学院植物保护研究所,江苏南京210014;2.扬州大学园艺与植物保护学院,江苏扬州225009;3.江苏省农业科学院经济作物研究所,江苏南京210014;4.徐州市铜山区植物保护站,江苏徐州221116)
Author(s):
FAN Ya-lei12ZHAO Min1DENG Sheng1LIU Rui-xian3 YAO Huan-zhao4WEI Li-hui1FENG Hui1
(1.Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014,China;2.School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009,China;3.Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014,China;4.Plant Protection Station of Tongshan District of Xuzhou City, Xuzhou 221116,China)
关键词:
猕猴桃根结线虫北方根结线虫内转录间隔区(ITS)COⅡ进化分析
Keywords:
kiwifruitroot-knot nematodeMeloidogyne haplainternal transcribed spacer(ITS)COⅡphylogenetic analysis
分类号:
S436.634
DOI:
doi:10.3969/j.issn.1000-4440.2021.01.010
文献标志码:
A
摘要:
根结线虫病长期以来对猕猴桃安全生产造成了严重威胁。调查发现江苏省连云港市部分猕猴桃种植园根结线虫病发生普遍,组织切片可见根部出现根结线虫诱导的特异的巨细胞。形态学观察和分子检测结果显示,尽管与其他群体存在一定差异,但仍确定本次分离自猕猴桃的根结线虫(种群编号:CN43)为北方根结线虫(Meloidogyne hapla)。基于内转录间隔区(ITS)和COⅡ-16S序列构建的遗传进化树显示,CN43分离群体与已知的北方根结线虫位于同一进化分支,而与其他种类的根结线虫明显区分开来。以ITS序列构建的中接网络将34个北方根结线虫分离群体划分为10个单倍型,其中CN43属于最大的单倍型群组;然而,单倍型分析不能确定各分离群体在地理分布上的关联性。综上,本研究首次报道了北方根结线虫在中国猕猴桃上的侵染和发生,其分离群体的形态学描述和分子特征分析可为揭示猕猴桃根结线虫的种群多样性和种间变异提供参考。
Abstract:
Root-knot diseases caused by Meloidogyne spp. have posed great threat to global kiwifruit industry for a long time. It was found through investigation that, the disease caused by root-knot nematode was common in part of the kiwifruit plantations in Lianyungang City, Jiangsu province. The specific giant cells were found in tissue slices of roots, which may be induced by root-knot nematodes. Results of morphological observation and molecular detection indicated that, the root-knot nematode (population code: CN43) separated from kiwifruits was confirmed to be Meloidogyne hapla, although there was difference compared with other polulations. Phylogenetic trees inferred from internal transcribed spacer (ITS) and partial COⅡ-16S sequences revealed that, isolate population of CN43 and M. hapla were within the same clade and could be separated from other root-knot nematode species obviously. Isolates of 34 M. hapla in NCBI database were divided into ten haplotypes using median-joining network constructed by ITS sequence, in which CN43 belonged to the largest haplotype group. However, haplotype analysis could hardly show the correlation of geographic distribution between the isolates. In conclusion, infection and occurrence of M. hapla in kiwifruit trees of China was reported for the first time. Analysis on the morphology and molecular characteristics of the isolated M. hapla populations can provide reference for revealing population diversity and intraspecific variability of root-knot nematodes in kiwifruit.

参考文献/References:

[1]张计育. 21世纪以来世界猕猴桃产业发展以及我国猕猴桃贸易与国际竞争力分析[J]. 中国农学通报, 2014, 30(23):48-55.
[2]TAO Y, XU C, YUAN C, et al. Meloidogyne aberrans sp. nov.(Nematoda: Meloidogynidae), a new root-knot nematode parasitizing kiwifruit in China[J]. PLoS One, 2017, 12(8): e0182627.
[3]COFCEWICZ E, ALMEIDA M R, ABALLAY E, et al. Meloidogyne ethiopica, a major root-knot nematode parasitising Vitis vinifera and other crops in Chile[J]. Nematology, 2007, 9(5): 633-639.
[4]范学科,党占平. 猕猴桃根结线虫病的病原鉴定及其防治[J]. 陕西农业科学, 2007(6): 71-72.
[5]李淑君,喻璋. 河南猕猴桃根结线虫新种[J]. 河南农业大学学报, 1991, 3(6): 71-72.
[6]XU J H, LIU P L, MENG Q P, et al. Characterisation of Meloidogyne species from China using isozyme phenotypes and amplified mitochondrial DNA restriction fragment length polymorphism[J]. European Journal of Plant Pathology, 2004, 110: 309-315.
[7]杨清平,王立华,谢志斌,等. 湖北猕猴桃主要病害及其有机病害治理技术[J]. 湖北农业科学, 2014, 53(10): 2307-2311.
[8]方炎祖,罗桂菊,朱晓香,等. 湖南猕猴桃根结线虫病害研究[J]. 湖南农业科学, 1991, 30(4): 40-42.
[9]陈文,孙燕芳,吴石平,等. 贵州修文猕猴桃根结线虫的发生种类与鉴定[J]. 西南农业学报, 2018, 31(1): 84-88.
[10]姜凤丽,邵桂英. 猕猴桃根结线虫病的初步研究[J]. 浙江林学院学报, 1990(1): 46-51.
[11]林尤剑,高日霞. 福建猕猴桃病害调查与鉴定[J]. 福建农业大学学报, 1995, 24(1): 49-53.
[12]张绍升,林尤剑,高日霞. 福建猕猴桃根结线虫病病原鉴定[J]. 福建农学院学报, 1993, 22(4): 433-435.
[13]刘维志. 植物病原线虫学[M]. 北京: 中国农业出版社, 2000: 384-400.
[14]冯辉,魏利辉,陈怀谷,等. 细尖潜根线虫(Hirschmanniella mucronata)江苏分离群体形态学和分子特征描述[J]. 植物病理学报, 2016, 46(4): 474-484.
[15]MAAFI Z T, SUBBOTIN S A, MOENS M. Molecular identification of cyst-forming nematodes (Heteroderidae) from Iran and a phylogeny based on ITS-rDNA sequences[J]. Nematology, 2003, 5(1): 99-111.
[16]STANTON J, JUGALL A, MORITZ C. Nucleotide polymorphisms and an improved PCR-based mtDNA diagnostic for parthenogenetic root-knot nematodes (Meloidogyne spp.)[J]. Fundamental and Applied Nematology, 1997, 20(3): 261-268.
[17]MENG Q, LONG H, XU J. PCR assays for rapid and sensitive identification of three major root-knot nematodes, Meloidogyne incognita, M. javanica and M. arenaria[J]. Acta Phytopathologcia Sinica, 2004,34:204-210.
[18]ZIJLSTRA C. Identification of Meloidogyne chitwoodi, M. fallax and M. hapla based on SCAR-PCR: a powerful way of enabling reliable identification of populations or individuals that share common traits[J]. European Journal of Plant Pathology, 2000, 106: 283-290.
[19]BANDELT H J, FORSTER P, RHL A. Median-joining networks for inferring intraspecic phylogenies[J]. Molecular Biology and Evolution, 1999, 16(1): 37-48.
[20]HANDOO Z A, SKANTAR A M, CARTA L K, et al. Morphological and molecular evaluation of a Meloidogyne hapla population damaging coffee (Coffea arabica) in Maui, Hawaii[J]. Journal of Nematology, 2005, 37(2): 136-145.
[21]赵洪海. 中国部分地区根结线虫的种类鉴定和四种最常见种的种内形态变异研究 [D]. 沈阳:沈阳农业大学, 1999.
[22]刘维志. 植物线虫志[M]. 北京: 中国农业出版社,2004: 372-380.
[23]宋志强. 江苏省蔬菜根结线虫的分布调查、种类鉴定及定量检测技术研究 [D]. 南京:南京农业大学, 2013.
[24]POWERS T, MULLIN P G, HARRIS T S, et al. Incorporating molecular identication of Meloidogyne spp. into a large-scale regional nematode survey[J]. Journal of Nematology, 2005, 37: 226-235.
[25]POWERS T. Nematode molecular diagnostics: from bands to barcodes[J]. Annual Review of Phytopathology, 2004, 42: 367-383.
[26]林宇,王金成,迟元凯,等. 基于GenBank分析28S(D2/D3)、18S和ITS序列作为根结线虫条形码标记的适用性[J]. 南京农业大学学报, 2013, 36(5): 71-76.

相似文献/References:

[1]李亚茹,王银磊,赵丽萍,等.番茄ty-5和 Mi-1基因多重 PCR 体系的建立[J].江苏农业学报,2016,(04):869.[doi:10.3969/j.issn.100-4440.2016.04.024]
 LI Ya-ru,WANG Yin-lei,ZHAO Li-ping,et al.Identification of ty-5 gene and Mi-1 gene by multiplex PCR in tomato[J].,2016,(01):869.[doi:10.3969/j.issn.100-4440.2016.04.024]
[2]陈曦,冯辉,张金凤,等.拟南芥抗根结线虫和蚜虫的功能基因鉴定[J].江苏农业学报,2015,(06):1250.[doi:doi:10.3969/j.issn.1000-4440.2015.06.009]
 CHEN Xi,FENG Hui,ZHANG Jin-feng,et al.Identification of genes resistant to root knot nematodes and aphids in Arabidopsis thaliana[J].,2015,(01):1250.[doi:doi:10.3969/j.issn.1000-4440.2015.06.009]
[3]张安世,司清亮,齐秀娟,等.猕猴桃种质资源的SRAP遗传多样性分析及指纹图谱构建[J].江苏农业学报,2018,(01):138.[doi:doi:10.3969/j.issn.1000-4440.2018.01.020]
 ZHANG An-shi,SI Qing-liang,QI Xiu-juan,et al.Genetic diversity and fingerprints of Actinidia germplasm resource based on SRAP markers[J].,2018,(01):138.[doi:doi:10.3969/j.issn.1000-4440.2018.01.020]

备注/Memo

备注/Memo:
收稿日期:2020-06-20基金项目:国家自然科学基金项目(31871943); 江苏省农业科技自主创新基金项目[CX(18)2005]; 江苏省农业科学院“小而特”学科建设项目[ZX(19)6005]作者简介:范亚磊(1994-),男,江苏淮安人,硕士研究生,从事植物线虫病害防治研究。通讯作者:冯辉,(Tel)025-84390769;(E-mail)fenghui@jaas.ac.cn
更新日期/Last Update: 2021-03-15