[1]施杰,熊凯祥,李志,等.基于轻量化改进YOLOv8模型和边缘计算的玉米病虫害检测系统[J].江苏农业学报,2025,(02):313-322.[doi:doi:10.3969/j.issn.1000-4440.2025.02.012]
 SHI Jie,XIONG Kaixiang,LI Zhi,et al.Maize pest and disease detection system based on lightweight improved YOLOv8 model and edge computing[J].,2025,(02):313-322.[doi:doi:10.3969/j.issn.1000-4440.2025.02.012]
点击复制

基于轻量化改进YOLOv8模型和边缘计算的玉米病虫害检测系统()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年02期
页码:
313-322
栏目:
农业信息工程
出版日期:
2025-02-28

文章信息/Info

Title:
Maize pest and disease detection system based on lightweight improved YOLOv8 model and edge computing
作者:
施杰12熊凯祥1李志1陈立畅1唐秀英1杨琳琳12
(1.云南农业大学机电工程学院,云南昆明650201;2.云南省作物生产与智慧农业重点实验室,云南昆明650201)
Author(s):
SHI Jie12XIONG Kaixiang1LI Zhi1CHEN Lichang1TANG Xiuying1YANG Linlin12
(1.Faculty of Mechanical and Electrical Engineering, Yunnan Agricultural University, Kunming 650201, China;2.The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Kunming 650201, China)
关键词:
玉米病虫害检测系统YOLOv8模型轻量化改进边缘计算
Keywords:
cornpest and disease detection systemYOLOv8 modellightweight improved modeledge computing
分类号:
S435.13
DOI:
doi:10.3969/j.issn.1000-4440.2025.02.012
文献标志码:
A
摘要:
为实现玉米病虫害的原位准确检测与识别,本研究设计了一套基于边缘计算的玉米病虫害智能检测系统。该系统基于YOLOv8模型并进行改进,具体改进方法包括:采用高效视觉网络(EfficientViT)作为主干网络,以降低计算量;在特征融合网络中引入幻影卷积(GhostConv),进一步减轻计算负担;在C2f模块中引入空间通道重建卷积(SCConv),以增强特征提取性能;将损失函数替换为具有动态非单调聚焦机制的损失函数(WIoU),以提高模型的识别精度。同时,本研究设计了基于边缘计算的病虫害检测系统上位机、下位机架构,并将该轻量化模型部署到Jetson orin nano边缘计算设备上。系统采用Pyside6开发系统可视化界面,除具备识别与训练功能外,还集成了基于大模型技术的AI专家库,可以实现对病虫害的智能化诊断。通过自建的玉米病虫害数据集对改进模型YOLOv8-EGCW进行检验。结果表明,与原始模型YOLOv8m相比,改进模型YOLOv8-EGCW的精确度、召回率和平均精度均值分别提升了0.4个百分点、1.6个百分点和1.2个百分点,参数量和模型大小大幅减少,单张图像检测时间缩短。建立的玉米病虫害检测系统测试结果显示,准确率达到93.4%,检测速度达1 s 25帧。表明该系统能够满足边缘计算环境下玉米病虫害原位检测的需求。
Abstract:
In order to achieve in-situ accurate detection and identification of maize pests and diseases, this study designed an intelligent detection system for maize pests and diseases based on edge computing. The system was improved based on the YOLOv8 model with specific improvement methods, including adopting the Efficient Vision Transformer (EfficientViT) as the backbone network to reduce the computational load, introducing Ghost Convolution (GhostConv) into the feature fusion network to further reduce the computational burden, introducing Spatial-Channel Convolution (SCConv) into the C2f module to enhance the feature extraction performance, and replacing the loss function with the Wise Intersection over Union (WIoU) loss function that had a dynamic non-monotonic focusing mechanism to improve the recognition accuracy of the model. At the same time, this study designed the upper and lower computer architectures of the pest and disease detection system based on edge computing and deployed this lightweight model to the Jetson Orin Nano edge computing device. The system used Pyside6 to develop a visual interface. In addition to the recognition and training functions, it also integrated an AI expert library based on large-model technology, which could realize intelligent diagnosis of pests and diseases. The improved model YOLOv8-EGCW was tested using a self-built maize pest and disease dataset. The results showed that compared with the original YOLOv8m model, the precision, recall rate, and mean average precision of the improved model YOLOv8-EGCW increased by 0.4 percentage points, 1.6 percentage points, and 1.2 percentage points, respectively. The number of parameters and the model size were greatly reduced, and the detection time for a single image was shortened. The test results of the established corn pest and disease detection system indicated that the accuracy rate reached 93.4% and the detection speed reached 25 frames per second. These results indicated that the system could meet the requirements of in-situ detection of maize pests and diseases in the edge computing environment.

参考文献/References:

[1]刘石磊. 2023年我国玉米市场运行情况与2024年行情展望[J]. 粮食与饲料工业,2024(2):1-3.
[2]DONG P X, WANG X D. Recognition of greenhouse cucumber disease based on image processing technology[J]. Open Journal of Applied Sciences,2013,3(1):27-31.
[3]戴宁. 图像处理在玉米虫害识别系统中的应用研究[J]. 牡丹江大学学报,2019,28(2):104-107.
[4]JOTHIARUNA N, SUNDAR K J A, KARTHIKEYAN B, et al. A segmentation method for disease spot images incorporating chrominance in Comprehensive Color Feature and Region Growing[J]. Computers and Electronics in Agriculture,2019,165:104934.
[5]蒋龙泉,鲁帅,冯瑞,等. 基于多特征融合和SVM分类器的植物病虫害检测方法[J]. 计算机应用与软件,2014,31(12):186-190.
[6]WANG J X, YU H Y, SUI Y Y, et al. Research on identification of corn disease occurrence degree based on improved ResNeXt network[J]. International Journal of Pattern Recognition and Artificial Intelligence,2022,36 (2):1-15.
[7]陈啟昇,谢浩,张纬东,等. 基于深度学习的植物病虫害智能检测系统研究[J]. 农村经济与科技,2021,32(18):50-52.
[8]BI C G, XU S Z, NAN H, et al. Identification method of corn leaf disease based on improved Mobilenetv3 Model[J]. Agronomy,2023,13:300.
[9]徐会杰,黄仪龙,刘曼. 基于改进YOLOv3模型的玉米叶片病虫害检测与识别研究[J]. 南京农业大学学报,2022,45(6):1276-1285.
[10]李颀. 桃树病害和害虫图像检测系统的研究与实现[D]. 泰安:山东农业大学,2022.
[11]CHEN C J, HUANG Y Y, LI Y S, et al. Identification of fruit tree pests with deep learning on embedded drone to achieve accurate pesticide spraying[J]. IEEE Access,2021,9:21986-21997.
[12]刘忠,卢安舸,崔浩,等. 基于改进YOLOv8的轻量化荷叶病虫害检测模型[J]. 农业工程学报,2024,40(19):168-176.
[13] LIU X Y, PENG H W, ZHEN N X, et al. Efficientvit: Memory efficient vision transformer with cascaded group attention[C]//IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Jersey:IEEE Computer Society,2023.
[14]HAN K,WANG Y H,TIAN Q, et al. Ghostnet:more features from cheap operations[C]//IEEE. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. New Jersey:IEEE Computer Society,2020.
[15]LI J F, WEN Y, HE L H. Scconv:spatial and channel reconstruction convolution for feature redundancy[C]//IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Jersey:IEEE Computer Society,2023.
[16]TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU:bounding box regression loss with dynamic focusing mechanism[EB/OL]. (2023-04-08)
[2024-07-21]. https://doi.org/10.48550/arXiv.2301.10051.
[17]李茂,肖洋轶,宗望远,等. 基于改进YOLOv8模型的轻量化板栗果实识别方法[J]. 农业工程学报,2024,40(1):201-209.
[18] LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//ECCV. 14th European Conference on Computer Vision. Berlin: Springer,2016.
[19]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,39(6):1137-1149.

相似文献/References:

[1]宝华宾,梁帅强,吕远大,等.玉米籽粒蛋白含量Meta-QTL及候选基因分析[J].江苏农业学报,2016,(04):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
 BAO Hua-bin,LIANG Shuai-qiang,LYU Yuan- da,et al.Analysis of meta-QTL and candidate genes related to protein concentration in maize grain[J].,2016,(02):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
[2]印志同,秦秋霞,阚欣,等.玉米快速叶绿素荧光参数全基因组关联分析[J].江苏农业学报,2016,(04):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
 YIN Zhi-tong,QIN Qiu-xia,KAN Xin,et al.Genome-wide association analysis of fast chlorophyll fluorescence parameters in maize[J].,2016,(02):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
[3]岳海旺,陈淑萍,彭海成,等.玉米籽粒灌浆特性品种间比较[J].江苏农业学报,2016,(05):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
 YUE Hai-wang,CHEN Shu-ping,PENG Hai-cheng,et al.Grain filling characteristics in maize materials[J].,2016,(02):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
[4]周玲,梁帅强,林峰,等.玉米二态性 InDel 位点的鉴定和分子标记开发[J].江苏农业学报,2016,(06):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
 ZHOU Ling,LIANG Shuai-qiang,LIN Feng,et al.Biallelic InDel loci detection and molecular marker development in maize[J].,2016,(02):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
[5]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
 LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[6]江彬,毕银丽,申慧慧,等.氮营养与AM真菌协同对玉米生长及土壤肥力的影响[J].江苏农业学报,2017,(02):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
 JIANG Bin,BI Yin-li,SHEN Hui-hui,et al.Synergetic effects of Arbuscular mycorrhizal fungus and nitrogen on maize growth and soil fertility[J].,2017,(02):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
[7]李国锋,葛敏,吕远大.Opaque2转录因子对玉米α-醇溶蛋白基因家族成员表达的影响[J].江苏农业学报,2015,(06):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
 LI Guo-feng,GE Min,L Yuan-da.Differential expression of α-zein family genes regulated by Opaque2 transcription factor[J].,2015,(02):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
[8]管莉,张阿英.CaM 与 ZmCCaMK 相互作用参与 BR 诱导的玉米叶片抗氧化防护[J].江苏农业学报,2015,(01):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
 GUAN Li,ZHANG A-ying.CaM-ZmCCaMK interaction involved in brassinosteroid-induced antioxidant defense in leaves of maize[J].,2015,(02):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
[9]王元琮,何冰,林峰,等.调控玉米阻止授粉后叶片衰老的QTL定位[J].江苏农业学报,2017,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
 WANG Yuan-cong,HE Bing,LIN Feng,et al.QTL mapping for pollination-prevention on leaf senescence[J].,2017,(02):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
[10]田礼欣,李丽杰,刘旋,等.外源海藻糖对盐胁迫下玉米幼苗根系生长及生理特性的影响[J].江苏农业学报,2017,(04):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
 TIAN Li-xin,LI Li-jie,LIU Xuan,et al.Root growth and physiological characteristics of salt-stressed maize seedlings in response to exogenous trehalose[J].,2017,(02):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]

备注/Memo

备注/Memo:
收稿日期:2024-10-30基金项目:云南省重大科技专项(202302AE090020);云南省农业基础研究联合专项(202401BD070001-069);云南省作物生产与智慧农业重点实验室开放课题作者简介:施杰(1981-),男,云南昆明人,博士,副教授,硕士研究生导师,主要从事智慧农业、智能农业装备研究。(E-mail)km_shijie@126.com通讯作者:杨琳琳,(E-mail)29545343@qq.com
更新日期/Last Update: 2025-03-27