[1]陈杰,董舒超,宋刘霞,等.番茄矿质营养元素吸收与积累机制的研究进展[J].江苏农业学报,2025,(01):192-202.[doi:doi:10.3969/j.issn.1000-4440.2025.01.022]
 CHEN Jie,DONG Shuchao,SONG Liuxia,et al.Research progress on the mechanisms of mineral nutrition absorption and accumulation in tomato[J].,2025,(01):192-202.[doi:doi:10.3969/j.issn.1000-4440.2025.01.022]
点击复制

番茄矿质营养元素吸收与积累机制的研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年01期
页码:
192-202
栏目:
综述
出版日期:
2025-01-31

文章信息/Info

Title:
Research progress on the mechanisms of mineral nutrition absorption and accumulation in tomato
作者:
陈杰123董舒超12宋刘霞12赵丽萍12王银磊12赵统敏12
(1.江苏省农业科学院蔬菜研究所,江苏南京210014;2.江苏省高效园艺作物遗传改良重点实验室,江苏南京210014;3.南京农业大学资源与环境科学学院,作物遗传与创制创新利用全国重点实验室,江苏南京210095)
Author(s):
CHEN Jie123DONG Shuchao12SONG Liuxia12ZHAO Liping12WANG Yinlei12ZHAO Tongmin12
(1.Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China;3.State Key Laboratory of Crop Genetics and Germplasm Enhancement & Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China)
关键词:
番茄矿质营养元素重金属吸收积累转运蛋白
Keywords:
tomatomineral nutrientsheavy metalsuptakeaccumulationtransporters
分类号:
S641.2
DOI:
doi:10.3969/j.issn.1000-4440.2025.01.022
文献标志码:
A
摘要:
番茄是重要的蔬菜,其产量和品质在很大程度上取决于对土壤矿质营养元素的吸收与利用效率。植物吸收和积累的矿质营养元素经过土壤-食物链途径进入人体,既为人体提供必需营养元素,也可能带来有害元素的暴露风险。随着中国农田土壤质量下降、重金属污染问题突显,以及人民对高品质农产品需求的日益增长,如何对农作物可食用部位进行必需微量元素的生物强化,对有害元素的积累进行阻止,已成为高质量农业生产中亟需解决的问题。植物通过多种离子转运蛋白从土壤中吸收矿质营养元素,并将其转运至地上部,随后在不同组织和器官中进行转运、分配、再分配。但在这一复杂的运输网络中,仅有少量功能基因被克隆到。本文系统整理了番茄中大量元素、微量元素及重金属镉吸收与积累相关的基因,以及这些基因调控番茄矿质营养元素吸收、积累的机制,同时展望了关键基因在必需微量元素生物营养强化和重金属低积累番茄品种选育中的应用前景。本文旨在为高品质番茄育种研究提供新的思路和理论依据。
Abstract:
Tomato is an important vegetable, and its yield and quality largely depend on the efficiency of absorption and utilization of soil mineral nutrients. Mineral elements absorbed and accumulated by plants enter the human body through the soil-food chain route. They provide essential nutrients to the human body while also posing a risk of exposure to harmful elements. With the decline in the quality of farmland soil in China, the prominent problem of heavy metal pollution, and the growing demand of the people for high-quality agricultural products, how to bio-fortify essential trace elements in the edible parts of crops and prevent the accumulation of harmful elements has become an urgent issue in high-quality agricultural production. Plants absorb mineral nutrient elements from the soil through various ion transporters and transport them to the above-ground parts. Subsequently, these elements are transported, distributed, and re-distributed in different tissues and organs. However, only a small number of functional genes have been cloned in this complex transportation network. This paper systematically compiles the genes related to the absorption and accumulation of macro-elements, micro-elements, and heavy metal cadmium in tomatoes, as well as the regulatory mechanisms of these genes on the absorption and accumulation of mineral nutrients in tomatoes. At the same time, it looks ahead to the application prospects of key genes in breeding tomato varieties with bio-fortification of essential trace elements and low heavy-metal accumulation. This paper aims to provide new ideas and a theoretical basis for high-quality tomato breeding research.

参考文献/References:

[1]李君明,项朝阳,王孝宣,等. “十三五”我国番茄产业现状及展望[J]. 中国蔬菜,2021(2):13-20.
[2]SAINJU U M, DRIS R, SINGH B. Mineral nutrition of tomato[J]. Journal of Food Agriculture & Environment,2003,1(2):176-183.
[3]STITT M. Nitrate regulation of metabolism and growth[J]. Current Opinion in Plant Biology,1999,2(3):178-186.
[4]MA J F, TSAY Y F. Transport systems of mineral elements in plants:transporters,regulation and utilization[J]. Plant and Cell Physiology,2021,62(4):539-540.
[5]CLEMENS S, MA J F. Toxic heavy metal and metalloid accumulation in crop plants and foods[J]. Annual Review of Plant Biology,2016,67:489-512.
[6]ROBINSON N J, PROCTER C M, CONNOLLY E L, et al. A ferric-chelate reductase for iron uptake from soils[J]. Nature,1999,397(6721):694-697.
[7]刘思恬,祝秀梅,张婧,等. 不同类型番茄果实营养品质分析与综合评价[J]. 江西农业大学学报,2023,45(3):564-574.
[8]赵方杰,谢婉滢,汪鹏. 土壤与人体健康[J]. 土壤学报,2020,57(1):1-11.
[9]ZHAO F J, MCGRATH S P. Biofortification and phytoremediation[J]. Current Opinion in Plant Biology,2009,12(3):373-380.
[10]汪鹏,王静,陈宏坪,等. 我国稻田系统镉污染风险与阻控[J]. 农业环境科学学报,2018,37(7):1409-1417.
[11]ABENAVOLI M R, LONGO C, LUPINI A, et al. Phenotyping two tomato genotypes with different nitrogen use efficiency[J]. Plant Physiology and Biochemistry,2016,107:21-32.
[12]GLASS A D M. Nitrate uptake by plant roots[J]. Botany,2009,87(7):659-667.
[13]ONO F, FROMMER W B, VON WIRN N. Coordinated diurnal regulation of low-and high-affinity nitrate transporters in tomato[J]. Plant Biology,2000,2(1):17-23.
[14]ALBORNOZ F, GEBAUER M, PONCE C, et al. LeNRT1.1 improves nitrate uptake in grafted tomato plants under high nitrogen demand[J]. International Journal of Molecular Sciences,2018,19(12):3921.
[15]ABOUELSAAD I, WEIHRAUCH D, RENAULT S. Effects of salt stress on the expression of key genes related to nitrogen assimilation and transport in the roots of the cultivated tomato and its wild salt-tolerant relative[J]. Scientia Horticulturae,2016,211:70-78.
[16]FU Y L, YI H Y, BAO J, et al. LeNRT2.3 functions in nitrate acquisition and long-distance transport in tomato[J]. Febs Letters,2015,589(10):1072-1079.
[17]ZHENG Y J, YANG Z Q, LUO J, et al. Transcriptome analysis of sugar and acid metabolism in young tomato fruits under high temperature and nitrogen fertilizer influence[J]. Frontiers in Plant Science,2023,14:1197553.
[18]VON WIRN N, LAUTER F R, NINNEMANN O, et al. Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs and by light in leaves of tomato[J]. Plant Journal,2000,21(2):167-175.
[19]FILIZ E, AKBUDAK M A. Ammonium transporter 1 (AMT1) gene family in tomato (Solanum lycopersicum L.):bioinformatics, physiological and expression analyses under drought and salt stresses[J]. Genomics,2020,112(5):3773-3782.
[20]DOMNGUEZ-FIGUEROA J, CARRILLO L, RENAU-MORATA B, et al. The Arabidopsis transcription factor CDF3 is involved in nitrogen responses and improves nitrogen use efficiency in tomato[J]. Frontiers in Plant Science,2020,11:601558.
[21]ZHAO P F, YOU Q Y, LEI M G. A CRISPR/Cas9 deletion into the phosphate transporter SlPHO1;1 reveals its role in phosphate nutrition of tomato seedlings[J]. Physiologia Plantarum,2019,167(4):556-563.
[22]CHEN A, CHEN X, WANG H, et al. Genome-wide investigation and expression analysis suggest diverse roles and genetic redundancy of Pht1 family genes in response to Pi deficiency in tomato[J]. BMC Plant Biology,2014,14:61.
[23]MUCHHAL U S, RAGHOTHAMA K G. Transcriptional regulation of plant phosphate transporters[J]. Proceedings of the National Academy of Sciences,1999,96(10):5868-5872.
[24]BUCHER M, RAUSCH C, DARAM P. Molecular and biochemical mechanisms of phosphorus uptake into plants[J]. Journal of Plant Nutrition and Soil Science,2001,164(2):209-217.
[25]NAGY R, DRISSNER D, AMRHEIN N, et al. Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated[J]. New Phytologist,2009,181(4):950-959.
[26]XU G H, CHAGUE V, MELAMED-BESSUDO C, et al. Functional characterization of LePT4:a phosphate transporter in tomato with mycorrhiza-enhanced expression[J]. Journal of Experimental Botany,2007,58(10):2491-2501.
[27]YU G H, HUANG S C, HE R, et al. Transgenic rice overexperessing a tomato mitochondrial phosphate transporter,SlMPT3;1,promotes phosphate uptake and increases grain yield[J]. Journal of Plant Biology,2018,61(6):383-400.
[28]NIEVES-CORDONES M, ALEMN F, MARTNEZ V, et al. K+ uptake in plant roots. the systems involved,their regulation and parallels in other organisms[J]. Journal of Plant Physiology,2014,171(9):688-695.
[29]ALEMN F, NIEVES-CORDONES M, MARTNEZ V, et al. Root K+ acquisition in plants:the Arabidopsis thaliana model[J]. Plant and Cell Physiology,2011,52(9):1603-1612.
[30]NIEVES-CORDONES M, ALEMN F, MARTNEZ V, et al. The Arabidopsis thaliana HAK5 K+ transporter is required for plant growth and K+ acquisition from low K+ solutions under saline conditions[J]. Molecular Plant,2010,3(2):326-333.
[31]AMTMANN A, ARMENGAUD P. Effects of N,P,K and S on metabolism:new knowledge gained from multi-level analysis[J]. Current Opinion in Plant Biology,2009,12(3):275-283.
[32]TANG R J, ZHAO F G, YANG Y, et al. A calcium signalling network activates vacuolar K+ remobilization to enable plant adaptation to low-K environments[J]. Nature Plants,2020,6:384-393.
[33]MARTNEZ-MARTNEZ A, AMO J, JIMNEZ-ESTVEZ E, et al. SlCIPK9 regulates pollen tube elongation in tomato plants via a K+-independent mechanism[J]. Plant Physiology and Biochemistry,2024,215:109039.
[34]HARTJE S, ZIMMERMANN S, KLONUS D, et al. Functional characterisation of LKT1,a K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes[J]. Planta,2000,210(5):723-731.
[35]AMO J, LARA A, MARTNEZ-MARTNEZ A, et al. The protein kinase SlCIPK23 boosts K+ and Na+ uptake in tomato plants[J]. Plant Cell and Environment,2021,44(12):3589-3605.
[36]XU J, LI H D, CHEN L Q, et al. A protein kinase,interacting with two calcineurin B-like proteins, regulates K transporter AKT1 in Arabidopsis[J]. Cell,2006,125(7):1347-1360.
[37]NIEVES-CORDONES M, LARA A, SILVA M, et al. Root high-affinity K+ and Cs+ uptake and plant fertility in tomato plants are dependent on the activity of the high-affinity K+ transporter SlHAK5[J]. Plant Cell and Environment,2020,43(7):1707-1721.
[38]RDENAS R, GARCA-LEGAZ M F, LPEZ-GMEZ E, et al. NO3-, PO3-4 and SO2-4 deprivation reduced LKT1-mediated low-affinity K+ uptake and SKOR-mediated K+ translocation in tomato and Arabidopsis plants[J]. Physiologia Plantarum,2017,160(4):410-424.
[39]HONG Y C, GUAN X J, WANG X, et al. Natural variation in SlSOS2 promoter hinders salt resistance during tomato domestication[J]. Horticulture Research,2023,10(1):232-239.
[40]WANG Z, HONG Y C, ZHU G T, et al. Loss of salt tolerance during tomato domestication conferred by variation in a Na+/K+ transporter[J]. Embo Journal,2020,39(10):e103256.
[41]WANG Z, HONG Y, LI Y, et al. Natural variations in SlSOS1 contribute to the loss of salt tolerance during tomato domestication[J]. Plant Biotechnology Journal,2021,19(1):20-22.
[42]LEIDI E O, BARRAGN V, RUBIO L, et al. The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato[J]. Plant Journal,2010,61(3):495-506.
[43]MORI S. Iron acquisition by plants[J]. Current Opinion in Plant Biology,1999,2(3):250-253.
[44]YI Y, GUERINOT M L. Genetic evidence that induction of root Fe(Ⅲ) chelate reductase activity is necessary for iron uptake under iron deficiency[J]. Plant Journal,1996,10(5):835-844.
[45]EIDE D, BRODERIUS M, FETT J, et al. A novel iron-regulated metal transporter from plants identified by functional expression in yeast[J]. Proceedings of the National Academy of Sciences of the United States of America,1996,93(11):5624-5628.
[46]WU H, LI L, DU J, et al. Molecular and biochemical characterization of the Fe(Ⅲ) chelate reductase gene family in Arabidopsis thaliana[J]. Plant and Cell Physiology,2005,46:1505-1514.
[47]WANG N, CUI Y, LIU Y, et al. Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana[J]. Molecular Plant,2013,6(2):503-513.
[48]YUAN Y X, ZHANG J, WANG D W, et al. AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants[J]. Cell Research,2005,15(8):613-621.
[49]YUAN Y X, WU H L, WANG N, et al. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis[J]. Cell Research,2008,18(3):385-397.
[50]LI L H, CHENG X D, LING H Q. Isolation and characterization of Fe(Ⅲ)-chelate reductase gene LeFRO1 in tomato[J]. Plant Molecular Biology,2004,54(1):125-136.
[51]GAMA F, SAAVEDRA T, DANDLEN S, et al. Silencing of FRO1 gene affects iron homeostasis and nutrient balance in tomato plants[J]. Journal of Plant Nutrition and Soil Science,2023,186(5):554-567.
[52]HE X X, JIN C W, LI G X, et al. Use of the modified viral satellite DNA vector to silence mineral nutrition-related genes in plants::silencing of the tomato ferric chelate reductase gene,FRO1,as an example[J]. Science in China Series C Life Sciences,2008,51(5):402-409.
[53]ECKHARDT U, MARQUES A M, BUCKHOUT T J. Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants[J]. Plant Molecular Biology,2001,45(4):437-448.
[54]SCHIKORA A, THIMM O, LINKE B, et al. Expression, localization, and regulation of the iron transporter LeIRT1 in tomato roots[J]. Plant and Soil,2006,284(1/2):101-108.
[55]BERECZKY Z, WANG H Y, SCHUBERT V, et al. Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato[J]. Journal of Biological Chemistry,2003,278(27):24697-24704.
[56]LING H Q, PICH A, SCHOLZ G, et al. Genetic analysis of two tomato mutants affected in the regulation of iron metabolism[J]. Molecular & General Genetics,1996,252(1/2):87-92.
[57]LING H Q, BAUER P, BERECZKY Z, et al. The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(21):13938-13943.
[58]DU J, HUANG Z, WANG B, et al. SlbHLH068 interacts with FER to regulate the iron-deficiency response in tomato[J]. Annals of Botany,2015,116:23-34.
[59]GUERINOT M L. The ZIP family of metal transporters[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2000,1465(1):190-198.
[60]HUANG S, YAMAJI N, MA J F. Metal transport systems in plants[J]. Annual Review of Plant Biology,2024,75:1-25.
[61]PAVITHRA G J, MAHESH S, PARVATHI M S, et al. Comparative growth responses and transcript profiling of zinc transporters in two tomato varieties under different zinc treatments[J]. Indian Journal of Plant Physiology,2016,21(2):208-212.
[62]SUN J Q, WANG M N, ZHANG X S, et al. SlZIP11 mediates zinc accumulation and sugar storage in tomato fruits[J]. Peerj,2024,12:e17473.
[63]KABIR A H, AKTHER M S, SKALICKY M, et al. Downregulation of Zn-transporters along with Fe and redox imbalance causes growth and photosynthetic disturbance in Zn-deficient tomato[J]. Scientific Reports,2021,11(1):6040.
[64]SHANKER K, MISHRA S, SRIVASTAVA S, et al. Effect of selenite and selenate on plant uptake and translocation of mercury by tomato (Lycopersicum esculentum)[J]. Plant and Soil,1996,183(2):233-238.
[65]WHITE P J. Selenium metabolism in plants[J]. Biochimica et Biophysica Acta-General Subjects,2018,1862(11):2333-2342.
[66]ZUCHI S, WATANABE M, HUBBERTEN H M, et al. The Interplay between sulfur and iron nutrition in tomato[J]. Plant Physiology,2015,169(4):2624-2639.
[67]HOWARTH J R, FOURCROY P, DAVIDIAN J C, et al. Cloning of two contrasting high-affinity sulfate transporters from tomato induced by low sulfate and infection by the vascular pathogen Verticillium dahliae[J]. Planta,2003,218(1):58-64.
[68]PAOLACCI A R, CELLETTI S, CATARCIONE G, et al. Iron deprivation results in a rapid but not sustained increase of the expression of genes involved in iron metabolism and sulfate uptake in tomato (Solanum lycopersicum L.) seedlings[J]. Journal of Integrative Plant Biology,2014,56(1):88-100.
[69]WANG M K, YANG W X, ZHOU F, et al. Effect of phosphate and silicate on selenite uptake and phloem-mediated transport in tomato (Solanum lycopersicum L.)[J]. Environmental Science and Pollution Research,2019,26(20):20475-20484.
[70]YARMOLINSKY D, BRYCHKOVA G, KURMANBAYEVA A, et al. Impairment in sulfite reductase leads to early leaf senescence in tomato plants[J]. Plant Physiology,2014,165(4):1505-1520.
[71]SHIRIAEV A, BRIZZOLARA S, SORCE C, et al. Selenium biofortification impacts the tomato fruit metabolome and transcriptional profile at ripening[J]. Journal of Agricultural and Food Chemistry,2023,71(36):13554-13565.
[72]CHEN J, HUANG X Y, SALT D E, et al. Mutation in OsCADT1 enhances cadmium tolerance and enriches selenium in rice grain[J]. New Phytologist,2020,226(3):838-850.
[73]SUN S K, XU X, TANG Z, et al. A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain[J]. Nature Communications,2021,12(1):1392.
[74]SUN S K, CHEN J, ZHAO F J. Regulatory mechanisms of sulfur metabolism affecting tolerance and accumulation of toxic trace metals and metalloids in plants[J]. Journal of Experimental Botany,2023,74(11):3286-3299.
[75]唐之贤,董歌,史高玲,等. 江苏省大米重金属调查与膳食摄入评估[J]. 农业环境科学学报,2024,43(4):721-731.
[76]SUI F Q, ZHAO D K, ZHU H T, et al. Map-based cloning of a new total loss-of-function allele of OsHMA3 causes high cadmium accumulation in rice grain[J]. Journal of Experimental Botany,2019,70(10):2857-2871.
[77]LU C N, ZHANG L X, TANG Z, et al. Producing cadmium-free Indica rice by overexpressing OsHMA3[J]. Environment International,2019,126:619-626.
[78]ZHANG L X, GAO C, CHEN C, et al. Overexpression of rice OsHMA3 in wheat greatly decreases cadmium accumulation in wheat grains[J]. Environmental Science & Technology,2020,54(16):10100-10108.
[79]CHAO D Y, SILVA A, BAXTER I, et al. Genome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana[J]. PLoS Genetics,2012,8(9):e1002923.
[80]ZHAO F J, CHANG J D. A weak allele of OsNRAMP5 for safer rice[J]. Journal of Experimental Botany,2022,73(18):6009-6012.
[81]YU E, WANG W G, YAMAJI N, et al. Duplication of a manganese/cadmium transporter gene reduces cadmium accumulation in rice grain[J]. Nature Food,2022,3(8):597-607.
[82]赵曜,文朗,骆少丹,等. 番茄HMA基因家族的鉴定及SlHMA1镉转运功能研究[J]. 生物技术通报,2024,40(2):212-222.
[83]SU L H, XIE Y D, HE Z Q, et al. Network response of two cherry tomato (Lycopersicon esculentum) cultivars to cadmium stress as revealed by transcriptome analysis[J]. Ecotoxicology and Environmental Safety,2021,222:112473.
[84]LUO B F, DU S T, LU K X, et al. Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants[J]. Journal of Experimental Botany,2012,63(8):3127-3136.
[85]CHEN L, WU M, JIN W, et al. Gene identification and transcriptome analysis of cadmium stress in tomato[J]. Frontiers in Sustainable Food Systems,2023,7:1303753.
[86]ANWAR A, WANG Y, CHEN M, et al. Zero-valent iron (nZVI) nanoparticles mediate SlERF1 expression to enhance cadmium stress tolerance in tomato[J]. Journal of Hazardous Materials,2024,468:133829.
[87]KANG Y Y, QIN H Y, WANG G H, et al. Selenium nanoparticles mitigate cadmium stress in tomato through enhanced accumulation and transport of sulfate/selenite and polyamines[J]. Journal of Agricultural and Food Chemistry,2024,72(3):1473-1486.
[88]SANJAYA, HSIAO P Y, SU R C, et al. Overexpression of Arabidopsis thaliana tryptophan synthase beta 1 (AtTSB1) in Arabidopsis and tomato confers tolerance to cadmium stress[J]. Plant Cell and Environment,2008,31(8):1074-1085.
[89]ZHOU X B, YANG J, KRONZUCKER H J, et al. Selenium biofortification and interaction with other elements in plants:a review[J]. Frontiers in Plant Science,2020,11:586421.
[90]刘锐,黄家章,苗艺源,等. 中国居民隐性饥饿问题现状、挑战与应对[J]. 食品与机械,2024,40(9):1-14.
[91]周义堂,张哲,孙军娜,等. 增氧灌溉对温室番茄生长及光响应特征的影响[J]. 排灌机械工程学报,2024,42(5):517-524.
[92]吴元彩,王东登,郑旭阳,等. 激素和蔗糖对番茄子叶节位侧芽萌发与生长的影响[J]. 南方农业学报,2024,55(2):509-519.
[93]李亚波,张文健,何丽萍,等. 不同生物引发条件对番茄冷胁迫下种子活力和幼苗生理特性的影响[J]. 南方农业学报,2024,55(2):531-539.
[94]周振鹏,叶含春,王振华,等. 降解膜覆盖下磁化水滴灌对加工番茄产量和水分利用效率的影响[J]. 排灌机械工程学报,2023,41(12):1268-1275.
[95]张哲,杨润亚,朱瑾瑾,等. 地下氧灌对土壤氮素分布及番茄水氮利用效率的影响[J]. 排灌机械工程学报,2023,41(9):952-958,965.
[96]WANG Y, SUN C L, YE Z B, et al. The genomic route to tomato breeding:past,present,and future[J]. Plant Physiology,2024,195(4):2500-2514.
[97]TIEMAN D, ZHU G, RESENDE M F R, et al. A chemical genetic roadmap to improved tomato flavor[J]. Science,2017,355(6323):391-394.
[98]ZHOU Y, ZHANG Z Y, BAO Z G, et al. Graph pangenome captures missing heritability and empowers tomato breeding[J]. Nature,2022,606(7914):527-534.
[99]ZHANG J Z, LYU H, CHEN J, et al. Releasing a sugar brake generates sweeter tomato without yield penalty[J]. Nature,2024,635(8039):647-656.
[100]WANG Z, HONG Y C, GUO Z J, et al. Natural variation in a molybdate transporter confers salt tolerance in tomato[J]. Plant Physiology,2025. DOI:https://doi.org/10.1093/plphys/kiaf004.
[101]LI J, SCARANO A, GONZALEZ N M, et al. Biofortified tomatoes provide a new route to vitamin D sufficiency[J]. Nature Plants,2022,8(6):611-616.
[102]DIAZ DE LA GARZA R I, GREGORY J F, HANSON A D. Folate biofortification of tomato fruit[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(10):4218-4222.
[103]LI R, LI R, LI X D, et al. Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum[J]. Plant Biotechnology Journal,2018,16(2):415-427.

相似文献/References:

[1]赵丽萍,李永灿,赵统敏,等.灰霉菌毒素诱导番茄抗性突变体及相关防御酶活性[J].江苏农业学报,2016,(03):631.[doi:10.3969/j.issn.1000-4440.2016.03.023]
 ZHAO Li-ping,LI Yong-can,ZHAO Tong-min,et al.Resistant mutant induced by toxin of Botrytis cinerea in tomato and the activities of related defensive enzymes[J].,2016,(01):631.[doi:10.3969/j.issn.1000-4440.2016.03.023]
[2]李亚茹,王银磊,赵丽萍,等.番茄ty-5和 Mi-1基因多重 PCR 体系的建立[J].江苏农业学报,2016,(04):869.[doi:10.3969/j.issn.100-4440.2016.04.024]
 LI Ya-ru,WANG Yin-lei,ZHAO Li-ping,et al.Identification of ty-5 gene and Mi-1 gene by multiplex PCR in tomato[J].,2016,(01):869.[doi:10.3969/j.issn.100-4440.2016.04.024]
[3]吕敏,苏建坤,白和盛,等.桃蚜取食和机械损伤对番茄和辣椒 PAL、LOX 和 PPO 活性的诱导作用[J].江苏农业学报,2016,(06):1273.[doi:doi:10.3969/j.issn.1000-4440.2016.06.013]
 Lv?Min,SU Jian-kun,BAI He-sheng,et al.The activities of PAL, LOX and PPO in tomato and pepper plants induced by aphid herbivory and mechanical damage[J].,2016,(01):1273.[doi:doi:10.3969/j.issn.1000-4440.2016.06.013]
[4]姜静,王银磊,赵丽萍,等.番茄qRT-PCR内参基因的筛选[J].江苏农业学报,2017,(02):389.[doi:doi:10.3969/j.issn.1000-4440.2017.02.024]
 JIANG Jing,WANG Yin-lei,ZHAO Li-ping,et al.Selection of tomato reference genes for qRT-PCR[J].,2017,(01):389.[doi:doi:10.3969/j.issn.1000-4440.2017.02.024]
[5]罗伟君,唐琳,周佳丽,等.纳米锌肥对番茄果实锌含量与品质的强化[J].江苏农业学报,2016,(01):184.[doi:10.3969/j.issn.1000-4440.2016.01.028 ]
 LUO Wei-jun,TANG Lin,ZHOU Jia-li,et al.Improvement of zinc concentration and quality of tomato fruit by nano zinc fertilizer[J].,2016,(01):184.[doi:10.3969/j.issn.1000-4440.2016.01.028 ]
[6]乔俊卿,陈志谊,梁雪杰,等.枯草芽孢杆菌Bs916在番茄根部的定殖[J].江苏农业学报,2015,(06):1278.[doi:doi:10.3969/j.issn.1000-4440.2015.06.013]
 QIAO Jun-qing,CHEN Zhi-yi,LIANG Xue-jie,et al.Colonization of Bacillus subtilis Bs916 on tomato root[J].,2015,(01):1278.[doi:doi:10.3969/j.issn.1000-4440.2015.06.013]
[7]翟亚明,魏丽萍,杨倩.不同调控方式对设施盐渍化土壤特性和番茄产量及品质的影响[J].江苏农业学报,2015,(04):871.[doi:10.3969/j.issn.1000-4440.2015.04.025]
 ZHAI Ya-ming,WEI Li-ping,YANG Qian.Effects of regulatory measures on characters of greenhouse saline soil and tomato yield and quality[J].,2015,(01):871.[doi:10.3969/j.issn.1000-4440.2015.04.025]
[8]张丽颖,冯新新,高晶晶,等.根际浇灌ALA 溶液对苹果叶片生理特性与果实品质的影响[J].江苏农业学报,2015,(01):158.[doi:10.3969/j.issn.1000-4440.2015.01.025]
 ZHANG Li-ying,FENG Xin-xin,GAO Jing-jing,et al.Effects of rhizosphere-applied 5-aminolevulinic acid (ALA) solutions on leaf physiological characteristics and fruit quality of apples[J].,2015,(01):158.[doi:10.3969/j.issn.1000-4440.2015.01.025]
[9]杨玛丽,赵统敏,余文贵,等.转基因 RNAi 技术在番茄研究中的应用[J].江苏农业学报,2015,(01):217.[doi:10.3969/j.issn.1000-4440.2015.01.034]
 YANG Ma-li,ZHAO Tong-min,YU Wen-gui,et al.Progress in RNA interference technique applied in tomato[J].,2015,(01):217.[doi:10.3969/j.issn.1000-4440.2015.01.034]
[10]唐玉新,曲萍,陆岱鹏,等.适合机械化移栽的番茄穴盘育苗基质配方筛选[J].江苏农业学报,2017,(06):1342.[doi:doi:10.3969/j.issn.1000-4440.2017.06.021]
 TANG Yu-xin,QU Ping,LU Dai-peng,et al.Screening of tomato plug seedling substrates proportion suitable for mechanized transplanting[J].,2017,(01):1342.[doi:doi:10.3969/j.issn.1000-4440.2017.06.021]

备注/Memo

备注/Memo:
收稿日期:2024-12-04基金项目:江苏省自然科学基金项目(BK20210389);国家自然科学基金青年基金项目(32202592);江苏省种业振兴“揭榜挂帅”项目[JBGS(2021)066]作者简介:陈杰(1992-),男,江苏丹阳人,博士,助理研究员,主要从事植物矿质营养元素吸收与积累的机制研究。(E-mail)jiechen@jaas.ac.cn通讯作者:赵统敏,(E-mail)tmzhaomail@163.com
更新日期/Last Update: 2025-02-28