[1]张志杨,丁子萱,冯迎辰,等.NaZSM-5分子筛提高秸秆水热制备胡敏酸产率的机制[J].江苏农业学报,2024,(11):2083-2092.[doi:doi:10.3969/j.issn.1000-4440.2024.11.012]
 ZHANG Zhiyang,DING Zixuan,FENG Yingchen,et al.Mechanism of NaZSM-5 zeolite in enhancing the yield of humic acid from straws via hydrothermal process[J].,2024,(11):2083-2092.[doi:doi:10.3969/j.issn.1000-4440.2024.11.012]
点击复制

NaZSM-5分子筛提高秸秆水热制备胡敏酸产率的机制()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年11期
页码:
2083-2092
栏目:
耕作栽培·资源环境
出版日期:
2024-11-30

文章信息/Info

Title:
Mechanism of NaZSM-5 zeolite in enhancing the yield of humic acid from straws via hydrothermal process
作者:
张志杨123丁子萱123冯迎辰124徐文龙12肖清波1234
(1.江苏省农业科学院农业资源与环境研究所,江苏南京210014;2.农业农村部盐碱土改良与利用<滨海盐碱地>重点实验室,江苏南京210014;3.江苏大学环境与安全工程学院,江苏镇江212013;4.南京信息工程大学生态与应用气象学院,江苏南京210044)
Author(s):
ZHANG Zhiyang123DING Zixuan123FENG Yingchen124XU Wenlong12XIAO Qingbo1234
(1.Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China;3.School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;4.School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China)
关键词:
NaZSM-5分子筛秸秆水热胡敏酸产率
Keywords:
NaZSM-5 molecular sievestrawhydrothermalhumic acidyield
分类号:
TQ44
DOI:
doi:10.3969/j.issn.1000-4440.2024.11.012
文献标志码:
A
摘要:
秸秆水热降解制备腐殖酸是一种重要的秸秆资源化利用途径,但是该过程面临胡敏酸产率较低的问题。本研究拟通过在秸秆水热处理中加入NaZSM-5分子筛,探讨其对胡敏酸产率的影响。结果表明,添加NaZSM-5分子筛能够显著提高胡敏酸的产率,随着NaZSM-5分子筛硅铝比的提高,胡敏酸产率呈现先上升后下降的趋势,其中硅铝比为50的NaZSM-5分子筛能使胡敏酸产率达到16.04%。为了深入探讨NaZSM-5分子筛提高胡敏酸产率的机制,本研究采用X射线光电子能谱、核磁共振波谱、氨气升序升温吸附与脱附、模型化合物季铵盐吸附与脱附、红外光谱等表征技术进行相关分析。结果表明,高硅铝比(200、85)的NaZSM-5分子筛中存在低强度、中强度的Lewis酸性位点;随着硅铝比降低(分别由200、85降至38、25),中强度的Lewis酸性位点逐渐转变为高强度的Lewis酸性位点。在硅铝比为50的NaZSM-5分子筛中,中强度Lewis酸性位点的含量最高,中强度Lewis酸性位点能够有效稳定秸秆水热降解过程中形成的季铵氮结构(R4N),从而促进胡敏酸的生成。高硅铝比的NaZSM-5对季铵氮结构的吸附强度较弱,不利于其转化为胡敏酸,而低硅铝比的NaZSM-5对季铵氮结构的吸附强度较强,可能导致季铵氮结构过度偶联,进而降低胡敏酸产率。本研究结果可为提高秸秆水热降解制备胡敏酸的产率提供一种有效方法,从而进一步推动秸秆的资源化利用。
Abstract:
The hydrothermal preparation of humic acid from straws is a significant method for utilizing straw resources, but it is often hindered by low humic acid yields. This study explored the impact of incorporating NaZSM-5 zeolite into the hydrothermal treatment of straws on humic acid yield. The experimental results indicated that adding NaZSM-5 zeolite significantly enhanced the yield of humic acid. Specifically, as the Si/Al molar ratio of NaZSM-5 increased, the yield of humic acid increased first and then decreased, with a peak yield of 16.04% observed at a Si/Al molar ratio of 50. To elucidate the mechanism of NaZSM-5 zeolite to improve humic acid yield, we employed several characterization techniques, including X-ray photoelectron spectroscopy, nuclear magnetic resonance spectroscopy, NH3 adsorption-desorption, quaternary ammonium salt adsorption-desorption, and infrared spectroscopy. The findings revealed that NaZSM-5 zeolite with high Si/Al molar ratios (200 and 85) contained low to medium strength Lewis acid sites. As the Si/Al molar ratio decreased (from 200 and 85 to 38 and 25), medium-strength Lewis acid sites gradually converted to high-strength Lewis acid sites. The NaZSM-5 zeolite with a Si/Al molar ratio of 50 exhibited the highest content of medium-strength Lewis acid sites. These medium-strength sites effectively stabilized the quaternary ammonium nitrogen structure (R4N) formed during the hydrothermal process, thus facilitating humic acid formation. Conversely, NaZSM-5 with high Si/Al molar ratios showed weaker adsorption strength for the quaternary ammonium nitrogen structure, which hindered its conversion to humic acid. On the other hand, NaZSM-5 with lower Si/Al molar ratios exhibited stronger adsorption, which could lead to excessive coupling of the quaternary ammonium nitrogen structure, thus reducing the yield of humic acid. This study presents an effective method for improving the yield of humic acid through straw hydrothermal treatment, thereby advancing the resource utilization of straws.

参考文献/References:

[1]宋海燕,尹友谊,宋建中. 不同来源腐殖酸的化学组成与结构研究[J]. 华南师范大学学报(自然科学版),2009,41(1):61-66.
[2]程娟,何环,衡曦彤,等. 微生物降解昭通褐煤提高游离腐殖酸含量[J]. 江苏农业科学,2020,48 (17):296-301.
[3]CAO Y Y, JIN H M, ZHU N, et al. High-efficiency fungistatic activity of vegetable waste-based humic acid related to the element composition and functional group structure[J]. Process Safety and Environmental Protection,2023,169:697-705.
[4]韩剑宏,孙一博,张连科,等. 生物炭与腐殖酸配施对盐碱土理化性质的影响[J]. 干旱地区农业研究,2020,38(6):121-127.
[5]孟磊,许义,刘严蓬,等. 沸石腐殖酸复合型土壤调理剂对黄河三角洲盐碱化农田土壤的改良效果[J]. 安徽农业科学 2022,50(14):70-72,75.
[6]DU Q, ZHANG S S, SONG J P, et al. Activation of porous magnetized biochar by artificial humic acid for effective removal of lead ions[J]. Journal of Hazardous Materials,2020,389:122115.
[7]刘超,赵建亮,尹春艳,等. 腐植酸提取及其应用的研究进展[J]. 农业与技术 2022,42(6):45-48.
[8]蔡茜茜,袁勇,胡佩,等, 腐殖质电化学特性及其介导的胞外电子传递研究进展[J]. 应用与环境生物学报,2015,21 (6):996-1002.
[9]张仪春,余震,袁勇. 水热腐殖化人工腐殖质的光谱和电化学特性研究[J]. 生态环境学报,2024,33(4):585-596.
[10]吴炳孙,韦家少,何鹏,等. 不同来源腐殖酸对香蕉园土壤理化性状及抗逆酶活性的影响[J]. 热带农业工程,2017,41 (5): 26-31.
[11]王文祥,张雷,李爱民. 废弃生物质水热腐殖化产物与介质酸碱性响应关系[J]. 大连理工大学学报,2022,62(1):9-17.
[12]CHEN P F, YANG R J, PEI Y H, et al. Hydrothermal synthesis of similar mineral-sourced humic acid from food waste and the role of protein[J]. Science of the Total Environment,2022,828:154440.
[13]GUO X X, LIU H T, WU S B. Humic substances developed during organic waste composting:formation mechanisms,structural properties,and agronomic functions[J]. Science of the Total Environment,2019,662:501-510.
[14]闫雨东,窦森,张博岩,等. 不同比例猪粪混合玉米秸秆还田对黑土腐殖质组成及胡敏酸结构特征的影响[J]. 吉林农业大学学报,2022,44(6):733-741.
[15]舒迪,熊晨,池涌. 厨余垃圾水热处理的腐殖化特性研究[J]. 环境科学学报,2016,36(7):2563-2570.
[16]DU Q, ZHANG S S, ANTONIETTI M, et al. Sustainable leaching process of phosphates from animal bones to alleviate the world phosphate crisis[J]. ACS Sustainable Chemistry & Engineering,2020,8(26):9775-9782.
[17]LIU K R, BADAMDORJ B, YANG F, et al. Accelerated anti-Markovnikov alkene hydrosilylation with humic-acid-supported electron-deficient platinum single atoms[J]. Angewandte Chemie (International Ed),2021,60(45):24220-24226.
[18]YANG F, ANTONIETTI M. Artificial humic acids:sustainable materials against climate change[J]. Advanced Science,2020,7(5):1902992.
[19]YANG F, DU Q, SUI L, et al. One-step fabrication of artificial humic acid-functionalized colloid-like magnetic biochar for rapid heavy metal removal[J]. Bioresource Technology,2021,328:124825.
[20]YANG F, ZHANG S S, SONG J P, et al. Synthetic humic acids solubilize otherwise insoluble phosphates to improve soil fertility[J]. Angewandte Chemie,2019,58(52):18813-18816.
[21]ZHANG S S, DU Q, CHENG K, et al. Efficient phosphorus recycling and heavy metal removal from wastewater sludge by a novel hydrothermal humification-technique[J]. Chemical Engineering Journal,2020,394:124832.
[22]WANG L X, CHI Y, DU K, et al. Hydrothermal treatment of food waste for bio-fertilizer production:formation and regulation of humus substances in hydrochar[J]. Science of the Total Environment,2022,838:155900.
[23]YANG F, TANG C Y, ANTONIETTI M. Natural and artificial humic substances to manage minerals,ions,water,and soil microorganisms[J]. Chemical Society Reviews,2021,50(10):6221-6239.
[24]ZHOU X L, LI J B, ZHANG J, et al. Bioaugmentation mechanism on humic acid formation during composting of food waste[J]. Science of the Total Environment,2022,830:154783.
[25]YANG F, ZHANG S S, CHENG K, et al. A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation[J]. Science of the Total Environment,2019,686:1140-1151.
[26]LIU G, LIU P F, MENG D M, et al. COx hydrogenation to methanol and other hydrocarbons under mild conditions with Mo3S4@ZSM-5[J]. Nature Communications,2023,14(1):513.
[27]ZHANG Z Y, HU M, GUI Q F, et al. Highly enhanced direct catalytic oxidation of cyclohexane to adipic acid with molecular oxygen:dynamic collaboration between zeolite channel micro-environment and Au clusters[J]. Chemical Engineering Journal,2023,467:143501.
[28]WANG H Q, SHEN B Y, CHEN X, et al. Modulating inherent lewis acidity at the intergrowth interface of mortise-tenon zeolite catalyst[J]. Nature Communications,2022,13(1):2924.
[29]KLUKOWSKI D, BALLE P, GEIGER B, et al. On the mechanism of the SCR reaction on Fe/HBEA zeolite[J]. Applied Catalysis B:Environmental,2009,93(1/2):185-193.
[30]王文祥,张雷,李爱民. 废弃生物质水热腐殖化产物与介质酸碱性响应关系[J]. 大连理工大学学报,2022,62(1):9-17.

相似文献/References:

[1]红梅,黄红英,肖 敏,等.“十三五”江苏省秸秆综合利用策略与秸秆产业发展的思考[J].江苏农业学报,2016,(03):534.[doi:10.3969/j.issn.1000-4440.2016.03.008]
 CHANG Zhi-zhou,JIN Hong-mei,HUANG Hong-ying,et al.New thinking regarding integrated utilization strategy and industrial development of crop straws in Jiangsu province for the 13th Five Year Plan[J].,2016,(11):534.[doi:10.3969/j.issn.1000-4440.2016.03.008]
[2]尹微琴,孟莉蓉,郁彬琦,等.垫料生物炭对土壤镉的钝化作用[J].江苏农业学报,2018,(01):62.[doi:doi:10.3969/j.issn.1000-4440.2018.01.009]
 YIN Wei-qin,MENG Li-rong,YU Bin-qi,et al.Passivation of Cd in soil by bedding materials derived-biochar[J].,2018,(11):62.[doi:doi:10.3969/j.issn.1000-4440.2018.01.009]
[3]李茹,陈国奇,张玉华,等.油菜和小麦秸秆水浸提液对千金子种子萌发和幼苗生长的影响及其应用[J].江苏农业学报,2018,(02):293.[doi:doi:10.3969/j.issn.1000-4440.2018.02.010]
 LI Ru,CHEN Guo-qi,ZHANG Yu-hua,et al.Influences of oilseed rape and wheat aquatic straw extract on Leptochloa chinensis seed germination and seedling growth, and the application potential[J].,2018,(11):293.[doi:doi:10.3969/j.issn.1000-4440.2018.02.010]
[4]石含之,吴志超,王旭,等.土壤外源镉老化过程中形态变化及影响因素[J].江苏农业学报,2019,(06):1360.[doi:doi:10.3969/j.issn.1000-4440.2019.06.013]
 SHI Han-zhi,WU Zhi-chao,WANG Xu,et al.Changes of chemical forms and influencing factors of soil exogenous cadmium during the aging process[J].,2019,(11):1360.[doi:doi:10.3969/j.issn.1000-4440.2019.06.013]
[5]舒同,周贝贝,段婧婧,等.添加秸秆碳源对沟渠水体中氮素去除及温室气体排放的影响[J].江苏农业学报,2023,(01):81.[doi:doi:10.3969/j.issn.1000-4440.2023.01.010]
 SHU Tong,ZHOU Bei-bei,DUAN Jing-jing,et al.Changes of nitrogen removal and greenhouse gas emission in ditch water with straw carbon source[J].,2023,(11):81.[doi:doi:10.3969/j.issn.1000-4440.2023.01.010]

备注/Memo

备注/Memo:
收稿日期:2024-09-04基金项目:国家自然科学基金项目(42407034);江苏省农业科技自主创新项目[CX(24)3107、CX(20)3079]作者简介:张志杨(1991-),男,安徽合肥人,博士,助理研究员,主要从事新型农业纳米的设计与研究。(E-mail)zhangzy@jaas.ac.cn通讯作者:肖清波,(E-mail)qbxiao@jaas.ac.cn
更新日期/Last Update: 2025-01-20