[1]袁洁,吴晓晴,石琨,等.丛枝菌根真菌对甘薯生物量、养分吸收和根系分泌物的影响[J].江苏农业学报,2024,(11):2073-2082.[doi:doi:10.3969/j.issn.1000-4440.2024.11.011]
 YUAN Jie,WU Xiaoqing,SHI Kun,et al.Effects of arbuscular mycorrhizal fungi on biomass, nutrient uptake and root exudates of Ipomoea batatas L.[J].,2024,(11):2073-2082.[doi:doi:10.3969/j.issn.1000-4440.2024.11.011]
点击复制

丛枝菌根真菌对甘薯生物量、养分吸收和根系分泌物的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年11期
页码:
2073-2082
栏目:
耕作栽培·资源环境
出版日期:
2024-11-30

文章信息/Info

Title:
Effects of arbuscular mycorrhizal fungi on biomass, nutrient uptake and root exudates of Ipomoea batatas L.
作者:
袁洁1吴晓晴13石琨12王磊1纪程1钟月华1冯冰1朱国鹏2孙丽1汪吉东1张永春1
(1.江苏省农业科学院农业资源与环境研究所/农业农村部江苏耕地保育科学观测实验站,江苏南京210014;2.海南大学园艺学院, 海南海口570228;3.南京农业大学,江苏南京210095)
Author(s):
YUAN Jie1WU Xiaoqing13SHI Kun12WANG Lei1JI Cheng1ZHONG Yuehua1FENG Bing1ZHU Guopeng2SUN Li1WANG Jidong1ZHANG Yongchun1
(1.Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Arable Land Conservation (Jiangsu), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China;2.College of Horticulture, Hainan University, Haikou 570228, China;3.Nanjing Agricultural University, Nanjing 210095, China)
关键词:
甘薯丛植菌根真菌根系分泌物非靶向代谢组
Keywords:
sweet potato Ipomoea batatas L.arbuscular mycorrhizal fungiroot exudatesnon-targeted metabolomics
分类号:
S154.3;S531
DOI:
doi:10.3969/j.issn.1000-4440.2024.11.011
文献标志码:
A
摘要:
为探究丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)对甘薯生长发育的影响,本研究在低钾(K0)和高钾(K1)土壤中,分别接种丛枝菌根真菌幼套近明球囊霉(Claroideoglomus etunicatum),测定甘薯生物量和氮、磷、钾吸收量、根系分泌物。结果表明,丛枝菌根真菌能够显著提高甘薯根系干重和根系氮、磷、钾吸收量(P<0.05),根系丛枝菌根真菌定殖率与根系氮、磷、钾吸收量呈极显著正相关(P<0.01)。丛枝菌根真菌幼套近明球囊霉对甘薯根系分泌物中脂质和类脂分子、有机杂环化合物影响明显。在低钾土壤中,丛枝菌根真菌幼套近明球囊霉主要影响宿主植物膜转运蛋白、矿物质吸收;在高钾土壤中,丛枝菌根真菌幼套近明球囊霉主要影响宿主植物的植物激素合成、植物次级代谢产物合成。甘薯丛枝菌根真菌定殖率、甘薯根系氮、磷、钾吸收量与环烯醚萜苷Caryoptosidic acid、6-反式-白三烯B4、白三烯B4、2-羟基-4-甲基戊酸、网脉碱、L-阿糖醇、托品酸、橙皮素、坎松醇F的相关性较强,这些代谢物可能在丛枝菌根真菌定殖甘薯根系过程中发挥关键作用。本研究有助于解析丛枝菌根真菌的促生作用及其在生态系统中的潜在生态功能,为丛枝菌根真菌在甘薯生产中的应用提供理论依据。
Abstract:
To explore the impact of arbuscular mycorrhizal fungi (AMF)on the growth and development of Ipomoea batatas L., Claroideoglomus etunicatum (a kind of AMF) was inoculated respectively in low-potassium (K0) and high-potassium (K1) soils, and the biomass, uptake amounts of nitrogen, phosphorus, potassium and root exudates of Ipomoea batatas L. were measured in this study. The results showed that arbuscular mycorrhizal fungi could significantly increase the dry weight of Ipomoea batatas L. roots and the nitrogen, phosphorus and potassium uptake amounts of the roots (P<0.05). There was an extremely significant positive correlation between the colonization rate of arbuscular mycorrhizal fungi in the roots and the nitrogen, phosphorus and potassium uptake amounts of the roots (P<0.01). Claroideoglomus etunicatum, the arbuscular mycorrhizal fungus, had a significant impact on lipid and lipid-like molecules and organic heterocyclic compounds in the root exudates of Ipomoea batatas L.. In low-potassium soil, Claroideoglomus etunicatum mainly affected the membrane transport proteins and mineral absorption of the host plants; in high-potassium soil, it mainly influenced the synthesis of plant hormones and the synthesis of plant secondary metabolites of the host plants. The colonization rate of arbuscular mycorrhizal fungi in Ipomoea batatas L., as well as the nitrogen, phosphorus and potassium uptake amounts of sweet potato roots, had a relatively strong correlation with Caryoptosidic acid, 6-trans-leukotriene B4, leukotriene B4, 2-hydroxy-4-methylvaleric acid, reticuline, L-arabitol, tropic acid, hesperetin and kanzonol F. These metabolites may play a key role in the process of arbuscular mycorrhizal fungi colonizing the roots of Ipomoea batatas L.. This study is helpful for analyzing the growth-promoting effect of arbuscular mycorrhizal fungi and its potential ecological functions in the ecosystem, and provides a theoretical basis for the application of arbuscular mycorrhizal fungi in Ipomoea batatas L. production.

参考文献/References:

[1]王欣,李强,曹清河,等. 中国甘薯产业和种业发展现状与未来展望[J]. 中国农业科学,2021,54(3):483-492.
[2]石琨,袁洁,叶佳敏,等. 丛枝菌根真菌对甘薯源库关系、养分吸收和产量的影响[J]. 中国土壤与肥料,2024(4):143-152.
[3]KALAMULLA R, KARUNARATHNA S C, TIBPROMMA S, et al. Arbuscular mycorrhizal fungi in sustainable agriculture[J]. Sustainability,2022,14(19):12250.
[4]盖京苹,冯固,李晓林. 接种丛枝菌根真菌对甘薯生长的影响研究[J]. 中国生态农业学报,2004,12(1):116-118.
[5]ALHADIDI N, PAP Z, LADNYI M, et al. Mycorrhizal inoculation effect on sweet potato (Ipomoea batatas (L.) Lam) seedlings[J]. Agronomy,2021,11(10):2019.
[6]周晓月,袁洁,石琨,等. 丛枝菌根真菌对甘薯生物量、根系形态及钾素吸收的影响[J]. 江苏农业学报,2022,38(4):939-948.
[7]YUAN J, SHI K, ZHOU X Y, et al. Interactive impact of potassium and arbuscular mycorrhizal fungi on the root morphology and nutrient uptake of sweet potato (Ipomoea batatas L.)[J]. Frontiers in Microbiology,2023,13:1075957.
[8]石琨,袁洁,叶佳敏,等. 丛枝菌根真菌在甘薯生产中的应用研究进展[J]. 江苏农业学报,2023,39(2):576-581.
[9]王雨菡,陈莲,张培珍,等. 基于文献计量分析的根系分泌物研究进展[J]. 中国农学通报,2024,40(7):144-154.
[10]杜思垚,方娅婷,鲁剑巍. 根系分泌物对作物养分吸收利用的影响研究进展[J]. 华中农业大学学报,2023,42(2):147-157.
[11]竹嘉妮,黄弘,杜勇,等. 丛枝菌根真菌影响宿主植物蒺藜苜蓿根系酸性磷酸酶活性的跨世代效应[J]. 生态学杂志,2022,41(5):912-918.
[12]孙晨瑜,曾燕红,马俊卿,等. 丛枝菌根真菌对黄花蒿生长和根系分泌物化学组成的影响[J]. 热带作物学报,2020,41(9):1831-1837.
[13]VIVES-PERIS V, DE-OLLAS C, GMEZ-CADENAS A, et al. Root exudates:from plant to rhizosphere and beyond[J]. Plant Cell Reports,2020,39:3-17.
[14]ZHANG G Y, RAZA W, WANG X H, et al. Systemic modification of cotton root exudates induced by arbuscular mycorrhizal fungi and Bacillus vallismortis HJ-5 and their effects on Verticillium wilt disease[J]. Applied Soil Ecology,2012,61:85-91.
[15]SUN C Y, ZENG Y H, MA J Q, et al. Effects of arbuscular mycorrhizal fungi inoculation on allelopathic potential of Artemisia annua L. root exudates[J]. Allelopathy Journal,2019,48:175-190.
[16]MA J Q, WANG W Q, YANG J, et al. Mycorrhizal symbiosis promotes the nutrient content accumulation and affects the root exudates in maize[J]. BMC Plant Biology,2022,22:64.
[17]XU Q W, FU H, ZHU B, et al. Potassium improves drought stress tolerance in plants by affecting root morphology, root exudates, and microbial diversity[J]. Metabolites,2021,11:131.
[18]AZIZAH F N, PURWANTO B H, OIKAWA A, et al. Detection of metabolites in rhizosphere of soybean under different status of soil potassium[J]. Soil Science and Plant Nutrition,2023,69(2):69-77.
[19]MINEMBA D, GLEESON D B, VENEKLAAS E, et al. Variation in morphological and physiological root traits and organic acid exudation of three sweet potato (Ipomoea batatas) cultivars under seven phosphorus levels[J]. Scientia Horticulturae,2019,256:108572.
[20]鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社,2000.
[21]XU Z, ZHAO Y Q, YANG D J, et al. Attractant and repellent effects of sweet potato root exudates on the potato rot nematode, Ditylenchus destructor[J]. Nematology,2015,17:117-124.
[22]MA J Q, XIE Y, YANG Y S, et al. AMF colonization affects allelopathic effects of Zea mays L. root exudates and community structure of rhizosphere bacteria[J]. Frontiers in Plant Science,2022,13:1050104.
[23]WANG J L, ZHANG T, SHEN X T, et al. Serum metabolomics for early diagnosis of esophageal squamous cell carcinoma by UHPLC-QTOF/MS[J]. Metabolomics,2016,12(7):116.
[24]SMITH C A, WANT E J, O’MAILLE G, et al. XCMS:processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification[J]. Analytical Chemistry,2006,78(3):779-787.
[25]陈翔,许波,吴宇,等. 不同季秸秆全量还田对夏玉米根系分泌物的影响[J]. 中国生态农业学报 (中英文),2023,31(9):1403-1415.
[26]张杨,曹靖,李广,等. 盐碱胁迫下湖南稷子苗期根系分泌物代谢组学[J]. 生态学报,2024,44(8):3540-3549.
[27]刘燕,曾维军,秦维,等. 威宁短柱油茶丛枝菌根真菌和深色有隔内生真菌定殖特征及其与果实经济性状的相关性[J]. 江苏农业科学,2023,51(22):145-153.
[28]杨双琳,邓利娟,黄博,等. 不同年限三七根系丛枝菌根真菌多样性及其与土壤理化性质的相关分析[J]. 南方农业学报,2023,54(11):3217-3227.
[29]喻彩丽,李亮,张贝,等. 丛枝菌根真菌和解磷菌对青梅根系发育、磷吸收及土壤磷有效性的影响[J]. 江苏农业科学,2023,51(17):240-248.
[30]黄博,邓利娟,杨双琳,等. 云南3种黄精根系丛枝菌根真菌群落结构特征差异研究[J]. 南方农业学报,2023,54(6):1656-1666.
[31]农颖杰,卢昱帆,许诗萍,等. 基于rDNA序列分析的3种丛枝菌根真菌分子鉴定方法比较 [J]. 南方农业学报,2023,54(10):2854-2864.
[32]CHANDRASEKARAN M. A meta-analytical approach on arbuscular mycorrhizal fungi inoculation efficiency on plant growth and nutrient uptake[J]. Agriculture,2020,10(9):370.
[33]HUSSAIN H A, ZHANG Q W, HUSSAIN S, et al. Effects of arbuscular mycorrhizal fungi on maize growth, root colonization, and root exudates varied with inoculum and application method[J]. Journal of Soil Science and Plant Nutrition,2021,21:1577-1590.
[34]YANG H S, ZHANG Q, DAI Y J, et al. Effects of arbuscular mycorrhizal fungi on plant growth depend on root system:a meta-analysis[J]. Plant and Soil,2015,389:361-374.
[35]郭晗铃,刘世俊,徐静,等. 丛枝菌根真菌对双子叶植物生长和根系特征的影响:整合分析[J]. 生态学杂志,2017,36(7):1855-1864.
[36]O’KEEFE D M, SYLVIA D M. Seasonal dynamics of the association between sweet potato and vesicular-arbuscular mycorrhizal fungi[J]. Mycorrhiza,1993,3:115-122.
[37]GAI J P, FENG G, CHRISTIE P, et al. Screening of arbuscular mycorrhizal fungi for symbiotic efficiency with sweet potato[J]. Journal of Plant Nutrition,2006,29:1085-1094.
[38]FARMER M J, LI X, FENG G, et al. Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China[J]. Applied Soil Ecology,2007,35:599-699.
[39]RASTRELLI L, CACERES A, MORALES C, et al. Iridoids from Lippia graveolens[J]. Phytochemistry,1988,49(6):1829-1832.
[40]王浩,孙丽英. 植物激素调控丛枝菌根发育的作用机制研究进展[J]. 微生物学通报,2022,49(10):4448-4466.
[41]AKIYAMA K, MATSUZAKI K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi[J]. Nature,2005,435:824-827.
[42]TOMINAGA T, UENO K, SAITO H, et al. Monoterpene glucosides in Eustoma grandiflorum roots promote hyphal branching in arbuscular mycorrhizal fungi[J]. Plant Physiology,2024,193(4):2677-2690.
[43]XU Y J, CHEN Z, LI X Y, et al. Mycorrhizal fungi alter root exudation to cultivate a beneficial microbiome for plant growth[J]. Functional Ecology,2022,37(3):664-675.
[44]XU Y J, CHEN Z, LI X Y, et al. The mechanism of promoting rhizosphere nutrient turnover for arbuscular mycorrhizal fungi attributes to recruited functional bacterial assembly[J]. Molecular Ecology,2023,32:2335-2350.
[45]KONDHARE K R, PATIL A B, GIRI A P et al. Auxin:an emerging regulator of tuber and storage root development[J]. Plant Science,2021,306:110854.
[46]VLASSI A, NESLER A, PERAZZOLLI M, et al. Volatile organic compounds from Lysobacter capsica AZ78 as potential candidates for biological control of soilborne plant pathogens[J]. Frontiers in Microbiology,2020,11:1748.
[47]杜思垚,方娅婷,鲁剑巍. 根系分泌物对作物养分吸收利用的影响研究进展[J]. 华中农业大学学报,2023,42(2):147-157.

相似文献/References:

[1]唐忠厚,陈晓光,魏 猛,等.低钾下光照度与CO2浓度对不同钾效率基因型甘薯光合作用的影响[J].江苏农业学报,2016,(02):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
 TANG Zhong-hou,CHEN Xiao-guang,WEI Meng,et al.Photosynthesis in response to light intensity and CO2 concentration under low potassium condition in sweet potato with different genotypes of potassium utilization efficiency[J].,2016,(11):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
[2]董 月,安 霞,张 辉,等.不同品种甘薯的生物量累积、养分吸收和分配规律[J].江苏农业学报,2016,(02):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
 DONG Yue,AN Xia,ZHANG Hui,et al.Biomass accumulation and nutrients uptake and distribution in sweet potato cultivars[J].,2016,(11):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
[3]安霞,董月,吴建燕,等.氮肥形态对甘薯产量和养分吸收的影响[J].江苏农业学报,2016,(05):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
 AN Xia,DONG Yue,WU Jian-yan,et al.Effects of forms of nitrogen fertilizer on yield and nutrient uptake of sweet potato[J].,2016,(11):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
[4]张辉,朱绿丹,安霞,等.水分和钾肥耦合对甘薯光合特性和水分利用效率的影响[J].江苏农业学报,2016,(06):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
 ZHANG Hui,ZHU Lü-dan,AN Xia,et al.Effects of water coupled with K on the photosynthetic characteristics of sweet potato and its water use efficiency[J].,2016,(11):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
[5]张成玲,杨冬静,赵永强,等.镰刀菌胁迫对不同甘薯品种抗氧化酶及MDA含量的影响[J].江苏农业学报,2017,(02):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
 ZHANG Cheng-ling,YANG Dong-jing,ZHAO Yong-qiang,et al.Effect of Fusarium stress on antioxidant enzymes and MDA content in sweet potato varieties[J].,2017,(11):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
[6]齐鹤鹏,安霞,刘源,等.施钾量对甘薯产量及钾素吸收利用的影响[J].江苏农业学报,2016,(01):84.[doi:10.3969/j.issn.1000-4440.2016.01.013 ]
 QI He-peng,AN Xia,LIU Yuan,et al.Effects of potassium application rates on yield, potassium uptake and utilization in sweet potato (Ipomoea batatas L.) genotypes[J].,2016,(11):84.[doi:10.3969/j.issn.1000-4440.2016.01.013 ]
[7]马洪波,李传哲,宁运旺,等.硫缺乏对不同甘薯品种的生长及矿质元素吸收的影响[J].江苏农业学报,2015,(05):1024.[doi:doi:10.3969/j.issn.1000-4440.2015.05.013]
 MA Hong-bo,LI Chuan-zhe,NING Yun-wang,et al.Growth and mineral elements absorptions of different sweet potato varieties in response to sulfur deficiency[J].,2015,(11):1024.[doi:doi:10.3969/j.issn.1000-4440.2015.05.013]
[8]李元元,高志强,曹清河.甘薯SPF1转录因子的生物信息学分析[J].江苏农业学报,2017,(04):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
 LI Yuan-yuan,GAO Zhi-qiang,CAO Qing-he.Bioinformatics analysis of SPF1 transcription factors from sweet potato[Ipomoea batatas(L.) Lam][J].,2017,(11):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
[9]易中懿,汪翔,徐雪高,等.品种创新与甘薯产业发展[J].江苏农业学报,2018,(06):1401.[doi:doi:10.3969/j.issn.1000-4440.2018.06.028]
 YI Zhong-yi,WANG Xiang,XU Xue-gao,et al.Breeding innovation and development of sweet potato industry[J].,2018,(11):1401.[doi:doi:10.3969/j.issn.1000-4440.2018.06.028]
[10]李春华,汪吉东,张辉,等.磷缺乏对不同甘薯品种根系生长及磷素吸收的影响[J].江苏农业学报,2019,(01):91.[doi:doi:10.3969/j.issn.1000-4440.2019.01.013]
 LI Chun-hua,WANG Ji-dong,ZHANG Hui,et al.Responses of root growth and phosphorus uptake for sweet potatoes under low phosphorus supply[J].,2019,(11):91.[doi:doi:10.3969/j.issn.1000-4440.2019.01.013]

备注/Memo

备注/Memo:
收稿日期:2024-07-05基金项目:江苏省农业科学院资环所青年联合创新项目[ZCX(2022)21]作者简介:袁洁(1990-),女,江苏如东人,博士,助理研究员,研究方向为甘薯根际微生态。(E-mail)yuanjie@jaas.ac.cn通讯作者:汪吉东,(E-mail)jdwang66@163.com; 张永春,(E-mail)zhang66@sina.com
更新日期/Last Update: 2025-01-20