[1]娄丽娜,羊杏平,朱凌丽,等.基于BSA-seq 技术定位黄瓜黄绿叶色突变基因[J].江苏农业学报,2024,(09):1711-1718.[doi:doi:10.3969/j.issn.1000-4440.2024.09.015]
 LOU Lina,YANG Xingping,ZHU Lingli,et al.Mapping of cucumber virescent yellow leaf mutant gene based on BSA-seq technology[J].,2024,(09):1711-1718.[doi:doi:10.3969/j.issn.1000-4440.2024.09.015]
点击复制

基于BSA-seq 技术定位黄瓜黄绿叶色突变基因()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年09期
页码:
1711-1718
栏目:
园艺
出版日期:
2024-09-30

文章信息/Info

Title:
Mapping of cucumber virescent yellow leaf mutant gene based on BSA-seq technology
作者:
娄丽娜羊杏平朱凌丽姚协丰徐建张曼刘广侯茜刘金秋徐锦华
(江苏省农业科学院蔬菜研究所/江苏省高效园艺作物遗传改良重点实验室,江苏南京210014)
Author(s):
LOU LinaYANG XingpingZHU LingliYAO XiefengXU JianZHANG ManLIU GuangHOU QianLIU JinqiuXU Jinhua
(Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China)
关键词:
黄瓜黄绿叶色突变体BSA-seq基因定位
Keywords:
cucumbervirescent yellow leaf mutantBSA-seqgene mapping
分类号:
S642.2
DOI:
doi:10.3969/j.issn.1000-4440.2024.09.015
文献标志码:
A
摘要:
为明确课题组从地方收集的黄瓜黄绿叶色突变体中黄绿叶色突变基因,本研究利用绿叶(野生型)与黄绿叶色(突变体)黄瓜材料为亲本,配制正反杂交一代及二代分离群体,在分析黄绿叶色突变基因遗传规律的基础上,利用BSA-seq技术对双亲及F2代叶色极端混池进行测序,筛选黄瓜黄绿叶色突变性状的关联标记及候选基因。结果表明,绿叶色对黄绿叶色为完全显性,黄绿叶色突变基因为隐性基因。突变性状关联分析(SNP-index检测)得到1个与黄绿叶色突变相关的候选区域,位于黄瓜1号染色体上,总长度18 484 bp。该候选区域共有118个与黄绿叶色突变相关的SNP位点;候选区域共注释到3个基因,其中CsaV3_1G032820基因为黄瓜黄绿叶色突变最可能相关基因。本研究结果可为黄瓜黄绿叶色突变基因克隆和分子标记辅助育种提供基础。
Abstract:
In order to clarify the virescent yellow leaf mutant gene in cucumber virescent yellow leaf mutant collected by the research group from the local area, this study used green leaf (wild type) and virescent yellow leaf (mutant) cucumber materials as parents to prepare a reciprocal hybrid generation and a second generation separation population. On the basis of analyzing the genetic law of virescent yellow leaf mutant genes, BSA-seq technology was used to sequence the extreme mixing pools of parents and F2 generations, and to screen the associated markers and candidate genes of cucumber virescent yellow leaf mutant traits. The results showed that the green leaf color was completely dominant to virescent yellow leaf color, and the virescent yellow leaf color mutant gene was a recessive gene. A candidate region associated with virescent yellow leaf color mutation was obtained by SNP-index detection, which was located on chromosome 1 of cucumber, with a total length of 18 484 bp. A total of 118 SNP loci associated with virescent yellow leaf color mutation were found in this candidate region. Three genes were annotated in the candidate region, among which CsaV3_1G032820 gene was the most likely related gene of cucumber virescent yellow leaf color mutation. The results of this study can provide a basis for cucumber virescent yellow leaf color mutant gene cloning and molecular marker-assisted breeding.

参考文献/References:

[1]ESTEBAN R, FERNNDEZ-MARN B, BECERRIL J M, et al. Photoprotective implications of leaf variegation in E. dens-canis L. and P. officinalis L.[J]. Journal of Plant Physiology, 2008,165(12):1255-1263.
[2]STERN D B, HANSON M R, BARKAN A. Genetics and genomics of chloroplast biogenesis: maize as a model system[J]. Trends in Plant Science,2004,9(6):293-301.
[3]ZHAO Y, WANG M L, ZHANG Y Z, et al. A chlorophyll-reduced seeding mutant in oilseed rape, Brassica napus, for utilization in F1 hybrid production[J]. Plant Breeding,2000,119(2):131-135.
[4]NAGATA N, TANAKA R, SATOH S, et al. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of prochlorococcus species[J]. Plant Cell,2005,17(1):233-240.
[5]BEALE S I. Green genes gleaned[J]. Trends in Plant Science,2005,10(7):309-312.
[6]WU Z M, ZHANG X, HE B, et al. A Chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis[J]. Plant Physiology,2007,145(1):29- 40.
[7]TERRY M J, KENDRICK R E. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato[J]. Plant Physiology,1999,119(1):143-152.
[8]MONDE R A, ZITO F, OLIVE J, et al. Post-transcriptional defects in tobacco chloroplast mutants lacking the cytochrome b6/f complex[J]. Plant Journal,2000,21(1):61-72.
[9]胡远辉,王茂林,张年辉,等. 幼叶黄化油菜突变体Cr3529 中Toc33 cDNA 的克隆和序列分析[J]. 中国农业科学,2004,37(8):1198-1202.
[10]GAO M L, HU L L, LI Y H, et al.The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit[J]. Theor Appl Genet,2016,129:1961-1973.
[11]ZHANG K J, LI Y, ZHU W W, et al. Fine mapping and transcriptome analysis of virescent leaf gene v-2 in Cucumber (Cucumis sativus L.)[J]. Front Plant Sci,2020,11:570817.
[12]ZHA G H, YIN J, CHENG F, et al. Fine mapping of CscpFtsY, a gene conferring the yellow leaf phenotype in cucumber (Cucumis sativus L.)[J]. BMC Plant Biol,2022,22(1):570.
[13]MIAO H, ZHANG S P, WANG M, et al. Fine mapping of virescent leaf gene v-1 in cucumber (Cucumis sativus L.)[J]. Int J Mol Sci,2016,17(10):1602.
[14]SONG M F, WEI Q Z, WANG J, et al. Fine mapping of CsVYL, conferring virescent leaf through the regulation of chloroplast development in cucumber[J]. Front Plant Sci,2018,9:432.
[15]DING Y, YANG W, SU C G, et al. Tandem 13-lipoxygenase genes in a cluster confers yellow-green leaf in Cucumber[J]. Int J Mol Sci,2019,20(12):3102.
[16]HU L L, ZHANG H Q, XIE C, et al. A mutation in CsHD encoding a histidine and aspartic acid domain-containing protein leads to yellow young leaf-1 (yyl-1) in cucumber (Cucumis sativus L.)[J]. Plant Science,2020,293:110407.
[17]LI H, DURBIN R. Fast and accurate short read alignment with burrows-Wheeler transform[J]. Bioinformatics,2009,25(14):1754-1760.
[18]MCKENNA A, HANNA M, BANKS E, et al. The genome analysis toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research,2010,20(9):1297-1303.
[19]YANG H, WANG K. Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR[J]. Nature Protocols,2015,10(10):1556-1566.
[20]HILL J T, DEMAREST B L, BISGROVE B W, et al. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq[J]. Genome Research,2013,23(4):687-697.
[21]FEKIH R, TAKAGI H, TAMIRU M, et al. MutMap+: genetic mapping and mutant identification without crossing in rice[J]. PLoS One,2013,8(7):e68529.
[22]ALTSCHUL S F, MADDEN T L, SCHFFER A A, et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs[J]. Nucleic Acids Research,1997,25(17):3389-3402.
[23]邓泱泱,荔建琦,吴松锋,等. nr 数据库分析及其本地化[J]. 计算机工程,2006,32(5):71-73,76.
[24]ASHBURNER M, BALL C A, BLAKE J A, et al. Gene ontology:tool for the unification of biology[J]. Nature Genetics,2000,25(1):25-29.
[25]KANEHISA M, GOTO S, KAWASHIMA S, et al. The KEGG resource for deciphering the genome[J]. Nucleic Acids Research,2004,32(Database issue):D277-D280.
[26]TATUSOV R L, GALPERIN M Y, NATALE D A, et al. The COG database: a tool for genome-scale analysis of protein functions and evolution[J]. Nucleic Acids Research,2000,28(1):33-36.
[27]STERN D B, HANSON M R, BARKAN A. Genetics and genomics of chloroplast biogenesis: maize as a model system[J]. Trends in Plant Science,2004,9(6):293-301.
[28]马志虎,颜素芳,沈晓昆,等. 辣椒黄绿苗突变体叶色标记技术在种子生产中的作用[J].种子世界,2001(9):19-20.
[29]张泽民,朱海涛,王江,等. T-DNA插入产生的水稻白化苗突变的遗传分析[J]. 华南农业大学学报,2007,28(3):1-5.
[30]房贤涛,马洪丽,赵福源,等. 6个水稻叶色白转绿光温敏核不育突变体的育种研究[J]. 中国农学通报,2011,27(1):45-51.
[31]SMITH L. A rare dominant chlorophyll mutant in durum wheat:induced by atomic bomb irradiation[J]. Journal of Heredity,1952,43(3):125-128.
[32]曹莉. 一个新的小麦黄化突变体研究[D]. 杨陵: 西北农林科技大学,2007.
[33]安旭尧. 黄绿小麦近等基因系的鉴评及黄绿基因 Ygl 的分子标记定位[D]. 杨陵:西北农林科技大学,2016.
[34]LAM B C H, SAGE T L, BIANCHI F, et al. Role of SH3 domain-containing proteins in clathrin-mediated vesicle trafficking in Arabidopsis[J]. Plant Cell,2001,13(11):2499-2512.
[35]ZHUANG X H, WANG H, LAM S K, et al. A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in Arabidopsis[J]. Plant Cell,2013,25(11):4596-4615.
[36]曾笑威,刘翠翠,韩凝,等. 植物自噬的调控因子和受体蛋白研究进展[J]. 遗传,2016,38(7):644-650.

相似文献/References:

[1]梁郸娜,胡其靖,曹 磊,等.蚜虫侵染对黄瓜叶片中丙二醛含量及保护酶活性的影响[J].江苏农业学报,2016,(02):278.[doi:10.3969/j.issn.1000-4440.2016.02.007]
 LIANG Dan-na,HU Qi-jing,CAO Lei,et al.Effects of aphid(Aphis gossypii Glover)infestation on MDA content and protective enzymes activities in cucumber[J].,2016,(09):278.[doi:10.3969/j.issn.1000-4440.2016.02.007]
[2]顾大路,王伟中,孙爱侠,等.不同轮作模式对日光温室黄瓜生长的影响[J].江苏农业学报,2016,(04):874.[doi:10.3969/j.issn.100-4440.2016.04.025]
 GU Da-lu,WANG Wei-zhong,SUN Ai-xia,et al.Cucumber growth in solar greenhouse affected by rotation modes[J].,2016,(09):874.[doi:10.3969/j.issn.100-4440.2016.04.025]
[3]马晓燕,高艳明,李建设.容器对基质栽培春茬黄瓜生长和产量的影响[J].江苏农业学报,2016,(04):879.[doi:10.3969/j.issn.100-4440.2016.04.026]
 MA Xiao-yan,GAO Yan-ming,LI Jian-she.Influences of containers on growth and yield of substrate-cultured spring cucumber[J].,2016,(09):879.[doi:10.3969/j.issn.100-4440.2016.04.026]
[4]张微微,潘俊松,蒋苏,等.黄瓜 RIL 群体侧枝相关性状 QTL 定位[J].江苏农业学报,2017,(01):174.[doi:10.3969/j.issn.1000-4440.2017.01.028]
 ZHANG Wei-wei,PAN Jun-song,JIANG Su,et al.Genetic mapping of QTL associated with lateral branch-related traits using recombinant inbred lines population in cucumber (Cucumis sativus L.)[J].,2017,(09):174.[doi:10.3969/j.issn.1000-4440.2017.01.028]
[5]徐心诚.弱光对温室黄瓜叶片和茎中可溶性糖含量的影响[J].江苏农业学报,2015,(06):1448.[doi:doi:10.3969/j.issn.1000-4440.2015.06.040]
 XU Xin-cheng.Soluble sugar contents in leaves and stems of greenhouse cucumber exposed to weak light[J].,2015,(09):1448.[doi:doi:10.3969/j.issn.1000-4440.2015.06.040]
[6]柯希欢,李霞,张琛,等.菇-热-酶-肥新型栽培方式对大棚黄瓜形态、生理和产量的影响[J].江苏农业学报,2015,(04):877.[doi:10.3969/j.issn.1000-4440.2015.04.026]
 KE Xi-huan,LI Xia,ZHANG Chen,et al.Effects of mushroom-heat-enzyme-fertilizer on the morphology, physiology and yield of greenhouse cucumber rotated with straw mushroom[J].,2015,(09):877.[doi:10.3969/j.issn.1000-4440.2015.04.026]
[7]李建设,刘宏久,郑佳琦,等.灌溉时间和灌水量对黄瓜穴盘苗生长及生理的影响[J].江苏农业学报,2015,(02):401.[doi:10.3969/j.issn.1000-4440.2015.02.028]
 LI Jian-she,LIU Hong-jiu,ZHENG Jia-qi,et al.Cucumber seedling growth and physiology influenced by irrigation time and amount[J].,2015,(09):401.[doi:10.3969/j.issn.1000-4440.2015.02.028]
[8]陈夕军,朱键鑫,陈羽,等.抗白粉病黄瓜品种的叶片组织结构及其生理生化[J].江苏农业学报,2015,(01):55.[doi:10.3969/j.issn.1000-4440.2015.01.008]
 CHEN Xi-jun,ZHU Jian-xin,CHEN Yu,et al.Physiological and biochemical mechanism of cucumber cultivars resistant to powdery mildew and their differences in microstructure of leaves[J].,2015,(09):55.[doi:10.3969/j.issn.1000-4440.2015.01.008]
[9]徐刚,彭天沁,高文瑞,等.氮肥水平对木薯渣复合基质栽培黄瓜生长及光合作用的影响[J].江苏农业学报,2015,(01):68.[doi:10.3969/j.issn.1000-4440.2015.01.010]
 XU Gang,PENG Tian-qin,GAO Wen-rui,et al.Effects of nitrogen fertilizer rates on growth and photosynthesis of cucumber in cassava compound substrate[J].,2015,(09):68.[doi:10.3969/j.issn.1000-4440.2015.01.010]
[10]曹玉杰,薄凯亮,程春燕,等.外源尸胺增强黄瓜幼苗耐冷性的生理机制[J].江苏农业学报,2015,(01):122.[doi:10.3969/j.issn.1000-4440.2015.01.019]
 CAO Yu-jie,BO Kai-liang,CHENG Chun-yan,et al.Physiological mechanism of exogenous cadaverine enhancing the chilling tolerance of cucumber seedlings[J].,2015,(09):122.[doi:10.3969/j.issn.1000-4440.2015.01.019]

备注/Memo

备注/Memo:
收稿日期:2023-09-13基金项目:江苏省种业振兴揭榜挂帅项目[JBGS(2021)018]作者简介:娄丽娜(1982-),女,河南濮阳人,博士,研究员,主要从事瓜类作物遗传育种研究。(Tel)025-84391221;(E-mail)linabeibei@163.com通讯作者:徐锦华,(Tel) 025-84390264;(E-mail)jinhuaxu@jaas.ac.cn
更新日期/Last Update: 2024-11-17