[1]王宇,汪泓,肖玖军,等.基于MCC-GAPLS-PLSR的辣椒叶绿素含量高光谱定量反演[J].江苏农业学报,2024,(05):865-873.[doi:doi:10.3969/j.issn.1000-4440.2024.05.011]
 WANG Yu,WANG Hong,XIAO Jiujun,et al.Hyperspectral quantitative inversion of chlorophyll content in pepper based on MCC-GAPLS-PLSR[J].,2024,(05):865-873.[doi:doi:10.3969/j.issn.1000-4440.2024.05.011]
点击复制

基于MCC-GAPLS-PLSR的辣椒叶绿素含量高光谱定量反演()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年05期
页码:
865-873
栏目:
农业信息工程
出版日期:
2024-05-30

文章信息/Info

Title:
Hyperspectral quantitative inversion of chlorophyll content in pepper based on MCC-GAPLS-PLSR
作者:
王宇1汪泓2肖玖军345邢丹6李可相34张永亮2岳延滨7
(1.中国电建集团贵阳勘测设计研究院有限公司,贵州贵阳550081;2.贵州大学矿业学院,贵州贵阳550025;3.贵州科学院山地资源研究所,贵州贵阳550001;4.贵州省土地绿色整治工程研究中心,贵州贵阳550001;5.贵州大学资源与环境工程学院,贵州贵阳550025;6.贵州省农业科学院辣椒研究所,贵州贵阳550009;7.贵州省农业科学院农业科技信息研究所,贵州贵阳550009)
Author(s):
WANG Yu1WANG Hong2XIAO Jiujun345XING Dan6LI Kexiang34ZHANG Yongliang2YUE Yanbin7
(1.Guiyang Engineering Corporation Limited, Power China, Guiyang 550081, China;2.College of Mining, Guizhou University, Guiyang 550025, China;3.Institute of Mountain Resources, Guizhou Academy of Sciences, Guiyang 550001, China;4.Engineering Research Center for Land Green Consolidation of Guizhou, Guiyang 550001, China;5.College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China;6.Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China;7.Institute of Agricultural Science and Technology Information, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China)
关键词:
叶绿素含量辣椒高光谱光谱变换遗传算法-偏最小二乘法
Keywords:
chlorophyll contentpepperhyperspectralspectral transformationgenetic algorithm-partial least squares
分类号:
S127;S641.3
DOI:
doi:10.3969/j.issn.1000-4440.2024.05.011
摘要:
为了准确监测辣椒生长,本研究对辣椒冠层光谱反射率进行对数处理、倒数处理、倒数的对数处理、连续统去除处理、一阶微分处理、二阶微分处理,并与SPAD值进行相关性分析,用最大相关系数法(MCC)选取相关性较好的特征波段生成特征波段数据集,再用遗传算法-偏最小二乘法(GAPLS)进行降维得到最优特征波段组合,采用偏最小二乘法(PLSR)、反向传播神经网络(BPNN)、随机森林(RF)和最小二乘支持向量机(LSSVM)4种机器学习算法构建辣椒叶绿素含量反演模型。结果表明,最优波段和对应处理分别为700 nm(原始光谱)、699 nm(对数处理)、713 nm(连续统去除处理)、500 nm(二阶微分处理)、713 nm(二阶微分处理)。GAPLS的降维效果较好,与降维前相比PLSR模型的精度提升率最高,R2、RPD分别提升了82.22%、136.98%,RMSE降低了29.96%。4种模型中,GAPLS降维处理后的PLSR模型的精度最好,R2、RMSE和RPD分别为0.82、1.94、4.55。本研究构建的MCC-GAPLS-PLSR模型具有较好的反演潜力,适用于研究区辣椒叶片叶绿素含量测定,推动辣椒高效种植。
Abstract:
In order to accurately monitor the growth of peppers, this study performed logarithmic treatment, reciprocal treatment, reciprocal logarithmic treatment, continuum removal treatment, first derivative treatment, second derivate treatment on the canopy spectral reflectance of peppers, and conducted correlation analysis with SPAD values. The maximum correlation coefficient method (MCC) was used to select the feature bands with good correlation to generate a feature band dataset. And the genetic algorithm-partial least squares (GAPLS) was used to reduce the dimensionality to obtain the optimal feature band combination. Pepper chlorophyll content inversion model was constructed by using four machine learning algorithms: partial least squares regression (PLSR), backpropagation neural network (BPNN), random forest (RF) and least squares support vector machine (LSSVM). The results showed that the optimal wavelengths and corresponding treatments were 700 nm (original reflectivity), 699 nm (logarithmic treatment), 713 nm (continuum removal treatment), 500 nm (second derivate treatment), 713 nm (second derivate treatment). The dimensionality reduction effect by GAPLS was good. And compared with before dimension reduction, the accuracy improvement rate of PLSR model was the highest, R2 and RPD increased by 82.22% and 136.98% respectively, and RMSE decreased by 29.96%. Among the four models, PLSR model after dimensionality reduction by GAPLS had the best accuracy, with R2, RMSE, and RPD of 0.82, 1.94, and 4.55, respectively. The MCC-GAPLS-PLSR model constructed in this study has good inversion potential and is suitable for measuring the chlorophyll content of pepper leaves in the study area, thus promoting efficient cultivation of peppers.

参考文献/References:

[1]王雪,吉海彦. 基于便携式光谱仪和反射、透射光谱技术的小麦叶片叶绿素定量分析研究[J]. 中国农学通报,2011,27(21):39-43.
[2]ZHENG F L, XU B, XIAO P F, et al. Estimation of chlorophyll content in mountain steppe using in situ hyperspectral measurements[J]. Spectroscopy Letters,2021,54(7):495-506.
[3]JANG S H, HWANG Y K, LEE H J, et al. Selecting significant wavelengths to predict chlorophyⅡ content of grafted cucumber seedlings using hyperspectral images[J]. Korean Journal of Remote Sensing,2018,34(4):681-692.
[4]GUO Y H, CHEN S Z, LI X X, et al. Machine learning-based approaches for predicting SPAD values of maize using multi-spectral images[J]. Remote Sensing,2022,14(6):1337.
[5]陈澜,常庆瑞,高一帆,等. 猕猴桃叶片叶绿素含量高光谱反演模型研究[J]. 西北农林科技大学学报(自然科学版),2020,48(6):79-89,98.
[6]徐若涵,杨再强,申梦吟,等. 苗期低温胁迫对“红颜”草莓叶绿素含量及冠层高光谱的影响[J]. 中国农业气象,2022,43(2):148-158.
[7]李长春,施锦锦,马春艳,等. 基于小波变换和分数阶微分的冬小麦叶绿素含量反演[J]. 农业机械学报,2021,52(8):172-182.
[8]JIANG X P, ZHEN J N, MIAO J, et al. Newly-developed three-band hyperspectral vegetation index for estimating leaf relative chlorophyll content of mangrove under different severities of pest and disease[J]. Ecological Indicators,2022,140:108978.
[9]依尔夏提·阿不来提,买买提·沙吾提,白灯莎·买买提艾力,等. 基于随机森林法的棉花叶片叶绿素含量反演[J]. 作物学报,2019,45(1):81-90.
[10]李长春,施锦锦,马春艳,等. 基于小波变换和分数阶微分的冬小麦叶绿素含量反演[J]. 农业机械学报,2021,52(8):172-182.
[11]苑迎春,周毅,宋宇斐,等. 基于信息熵特征选择的小麦冠层叶绿素含量估测方法[J]. 农业机械学报,2022,53(8):186-195.
[12]张佳伟,王仲林,谭先明,等. 利用不同红边位置算法估测玉米叶绿素含量[J]. 浙江大学学报(农业与生命科学版),2021,47(4):464-472.
[13]刘涛,张寰,王志业,等. 利用无人机多光谱反演小麦叶面积指数和叶绿素含量[J]. 农业工程学报,2021,37(19):65-72.
[14] CANDIANI G, TAGLIABUE G, PANIGADA C, et al. Evaluation of hybrid models to estimate chlorophyⅡand nitrogen content of maize crops in the framework of the future CHIME mission[J]. Remote Sensing,2022,14(8):1792.
[15]王芳东,严志雁,赵小敏,等. 油茶叶片叶绿素含量高光谱估测的偏最小二乘模型参数选择[J]. 江西农业大学学报,2022,44(1):86-96.
[16] NAU J, PROKOPOV J, RˇEBCˇEK J, et al. SPAD chlorophyⅡ meter reading can be pronouncedly affected by chloroplast movement[J]. Photosynthesis Research,2010,105(3):265-271.
[17]付波霖,邓良超,张丽,等. 联合星载高光谱影像和堆栈集成学习回归算法的红树林冠层叶绿素含量遥感反演[J]. 遥感学报,2022,26(6):1182-1205.
[18]李胜,张培林,李兵,等. 量子GA-PLS特征选择算法及其应用[J]. 量子电子学报,2014,31(2):194-201.
[19]JIA W K, ZHAO D A, DING L. An optimized RBF neural network algorithm based on partial least squares and genetic algorithm for classification of small sample[J]. Applied Soft Computing,2016,48:373-384.
[20]SONG K S, LI L, LI S, et al. Hyperspectral retrieval of phycocyanin in potable water sources using genetic algorithm-partial least squares (GA-PLS) modeling[J]. International Journal of Applied Earth Observation and Geoinformation,2012,18:368-385.
[21]纪文君. 基于野外vis-NIR高光谱的土壤属性反演及田间水分影响去除研究[D]. 杭州:浙江大学,2014.
[22]彭晓伟,张爱军,杨晓楠,等. 谷子叶绿素含量高光谱特征分析及其反演模型构建[J]. 干旱地区农业研究,2022,40(2):69-77.
[23]ZHOU W, YANG H, XIE L J, et al. Hyperspectral inversion of soil heavy metals in Three-River Source Region based on random forest model[J]. CATENA,2021,202:105222.
[24]郭云开,许敏,张晓炯,等. 结合PRO-4SAIL和BP神经网络的叶绿素含量高光谱反演[J]. 测绘通报,2020 (3):21-24.
[25]SHAO Y H, LI C N, HUANG L W, et al. Joint sample and feature selection via sparse primal and dual LSSVM[J]. Knowledge-Based Systems,2019,185:104915.
[26]CHANG C W, LAIRD D A, MAUSBACH M J, et al. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties[J]. Soil Science Society of America Journal,2001,65(2):480-490.
[27] SERRANO L, PEUELAS J, USTIN S L. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data:Decomposing biochemical from structural signals[J]. Remote Sensing of Environment,2002,81(2):355-364.
[28]李岚涛,汪善勤,任涛,等. 基于高光谱的冬油菜叶片磷含量诊断模型[J]. 农业工程学报,2016,32(14):209-218.
[29]郭超凡,郭逍宇. 基于可见光波段包络线去除的湿地植物叶片叶绿素反演[J]. 生态学报,2016,36(20):6538-6546.
[30]李敏夏,张林森,李丙智,等. 苹果叶片高光谱特性与叶绿素含量和SPAD值的关系[J]. 西北林学院学报,2010,25(2):35-39.
[31]罗靖,杨再强,杨立,等. 基于高光谱参数建立苗期高温条件下草莓叶片叶绿素含量反演模型[J]. 中国农业气象,2022,43(10):832-845.
[32]方慧,宋海燕,曹芳,等. 油菜叶片的光谱特征与叶绿素含量之间的关系研究[J]. 光谱学与光谱分析,2007,27(9):1731-1734.
[33]蔡建楠,刘海龙,姜波,等. 基于GA-PLS算法的河网水体化学需氧量高光谱反演[J]. 灌溉排水学报,2020,39(9):126-131.
[34] WANG C, FENG M C, YANG W D, et al. Extraction of sensitive bands for monitoring the winter wheat (Triticum aestivum) growth status and yields based on the spectral reflectance[J]. PLoS One,2017,12(1):e167679.
[35]孔钰如,王李娟,冯海宽,等. 无人机高光谱波段选择的叶面积指数反演[J]. 光谱学与光谱分析,2022,42(3):933-939.

相似文献/References:

[1]吕敏,苏建坤,白和盛,等.桃蚜取食和机械损伤对番茄和辣椒 PAL、LOX 和 PPO 活性的诱导作用[J].江苏农业学报,2016,(06):1273.[doi:doi:10.3969/j.issn.1000-4440.2016.06.013]
 Lv?Min,SU Jian-kun,BAI He-sheng,et al.The activities of PAL, LOX and PPO in tomato and pepper plants induced by aphid herbivory and mechanical damage[J].,2016,(05):1273.[doi:doi:10.3969/j.issn.1000-4440.2016.06.013]
[2]吴淑华,赵文浩,李廷芳,等.南京辣椒上一种斑驳类型病毒病的分子鉴定[J].江苏农业学报,2015,(06):1284.[doi:doi:10.3969/j.issn.1000-4440.2015.06.014]
 WU Shu-hua,ZHAO Wen-hao,LI Ting-fang,et al.Molecular identification of a virus causing mottle symptoms in pepper leaves in Nanjing[J].,2015,(05):1284.[doi:doi:10.3969/j.issn.1000-4440.2015.06.014]
[3]郭广君,孙茜,刘金兵,等.基于辣椒基因组重测序的InDel标记开发及应用[J].江苏农业学报,2015,(06):1400.[doi:doi:10.3969/j.issn.1000-4440.2015.06.032]
 GUO Guang-jun,SUN Qian,LIU Jin-bing,et al.Development and application of pepper InDel markers based on genome re-sequencing[J].,2015,(05):1400.[doi:doi:10.3969/j.issn.1000-4440.2015.06.032]
[4]安飞飞,简纯平,杨龙,等.木薯幼苗叶绿素含量及光合特性对盐胁迫的响应[J].江苏农业学报,2015,(03):500.[doi:10.3969/j.issn.1000-4440.2015.03.006]
 AN Fei-fei,JIAN Chun-ping,YANG Long,et al.Chlorophyll contents and photosynthetic characteristics of cassava seedlings in response to NaCl stress[J].,2015,(05):500.[doi:10.3969/j.issn.1000-4440.2015.03.006]
[5]李廷芳,吴淑华,赵文浩,等.青海海东设施辣椒轻斑驳病毒的分子检测[J].江苏农业学报,2017,(04):958.[doi:doi:10.3969/j.issn.1000-4440.2017.04.036]
 LI Ting-fang,WU Shu-hua,ZHAO Wen-hao,et al.Molecular detection of mild mottle virus isolated from pepper in Haidong, Qinghai province[J].,2017,(05):958.[doi:doi:10.3969/j.issn.1000-4440.2017.04.036]
[6]刘潮,韩利红,宋培兵,等.辣椒类甜蛋白基因家族鉴定及表达分析[J].江苏农业学报,2018,(01):122.[doi:doi:10.3969/j.issn.1000-4440.2018.01.018]
 LIU Chao,HAN Li-hong,SONG Pei-bing,et al.Identification and expression analysis of thaumatin-like protein gene in pepper[J].,2018,(05):122.[doi:doi:10.3969/j.issn.1000-4440.2018.01.018]
[7]王运儒,秦玉燕,杨秀娟,等.40%氯虫·噻虫嗪水分散粒剂在辣椒及土壤中的残留消解动态[J].江苏农业学报,2018,(01):207.[doi:doi:10.3969/j.issn.1000-4440.2018.01.030]
 WANG Yun-ru,QIN Yu-yan,YANG Xiu-juan,et al.Dissipation of chlorantraniliprole and thiamethoxam in pepper and soil after field application in the form of 40% water dispersible granules[J].,2018,(05):207.[doi:doi:10.3969/j.issn.1000-4440.2018.01.030]
[8]孙彦坤,陈睿,李静,等.不同降雨年型下反枝苋和大豆光合特征的比较[J].江苏农业学报,2019,(03):554.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
 SUN Yan-kun,CHEN Rui,LI Jing,et al.Comparison of photosynthetic characteristics between Amaranthus retroexus and Glycine max under different annual rainfall pattern[J].,2019,(05):554.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
[9]潘宝贵,钱恒彦,戈伟,等.辣椒应答冷信号转导机制研究进展[J].江苏农业学报,2019,(03):743.[doi:doi:10.3969/j.issn.1000-4440.2019.03.034]
 PAN Bao-gui,QIAN Heng-yan,GE Wei,et al.Research progress of cold signal transduction mechanisms in pepper[J].,2019,(05):743.[doi:doi:10.3969/j.issn.1000-4440.2019.03.034]
[10]高晶霞,吴雪梅,牛勇琴,等.辣根素水乳剂对连作辣椒生长及土壤酶活性的影响[J].江苏农业学报,2021,(01):116.[doi:doi:10.3969/j.issn.1000-4440.2021.01.015]
 GAO Jing-xia,WU Xue-mei,NIU Yong-qin,et al.Effect of athomin water emulsion on growth and soil enzyme activities of continuous cropping pepper[J].,2021,(05):116.[doi:doi:10.3969/j.issn.1000-4440.2021.01.015]

备注/Memo

备注/Memo:
收稿日期:2023-05-31基金项目:国家重点研发计划项目(2017YFD1100307);贵州省科技支撑计划项目[黔科合支撑(2020)1Y172、黔科合支撑(2021)一般173、黔科合支撑(2021)一般496];贵州省农业科学院青年基金项目[黔农科院青年科技基金(2021)22]作者简介:王宇(1998-),女,贵州安顺人,硕士研究生,主要从事农业摄影测量方面的研究。(E-mail)2029807592@qq.com通讯作者:肖玖军,(E-mail)xiaojiujun0504@163.com
更新日期/Last Update: 2024-07-13