[1]唐伟杰,陈海元,张所兵,等.水稻氮素利用相关基因遗传研究进展[J].江苏农业学报,2024,(03):570-576.[doi:doi:10.3969/j.issn.1000-4440.2024.03.020]
 TANG Wei-jie,CHEN Hai-yuan,ZHANG Suo-bing,et al.Progress in genetic research on genes related to nitrogen utilization in rice[J].,2024,(03):570-576.[doi:doi:10.3969/j.issn.1000-4440.2024.03.020]
点击复制

水稻氮素利用相关基因遗传研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年03期
页码:
570-576
栏目:
综述
出版日期:
2024-03-30

文章信息/Info

Title:
Progress in genetic research on genes related to nitrogen utilization in rice
作者:
唐伟杰1陈海元1张所兵1唐骏1林静1方先文1张云辉12
(1.江苏省农业生物学重点实验室,江苏省农业科学院种质资源与生物技术研究所,江苏南京210014;2.江苏省粮食作物现代生产技术协同创新中心,江苏扬州225009)
Author(s):
TANG Wei-jie1CHEN Hai-yuan1ZHANG Suo-bing1TANG Jun1LIN Jing1FANG Xian-wen1ZHANG Yun-hui12
(1.Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, China)
关键词:
水稻氮素利用效率基因变异
Keywords:
ricenitrogen utilization efficiencygene variations
分类号:
S511
DOI:
doi:10.3969/j.issn.1000-4440.2024.03.020
摘要:
水稻氮素利用效率的高低直接影响水稻产量以及生态环境。在水稻氮素利用相关基因的研究中,研究人员通过连锁作图和关联作图等方法克隆基因,并解析水稻的氮素利用机理,为水稻氮素高效利用育种提供了基因资源。本文从水稻氮素利用QTL定位及基因克隆,基于全基因组关联分析的水稻氮素利用相关基因克隆,利用突变体克隆水稻氮素利用相关基因,利用反向遗传学克隆水稻氮素利用相关基因等方面总结了近年水稻氮素利用相关基因的研究进展。同时对该领域的未来研究进行了展望。本文为水稻氮素高效利用基因的研究和氮素高效利用育种提供了参考。
Abstract:
Nitrogen use efficiency (Nue) of rice directly affects rice yield and ecological environment. In the research of rice nitrogen use-related genes, researchers cloned the genes by means of linkage mapping and association mapping, and analyzed the mechanism of rice nitrogen utilization, which provided genetic resources for rice nitrogen efficient utilization breeding. This article summarized the research progress of rice nitrogen utilization related genes in recent years, including QTL mapping and gene cloning of rice nitrogen utilization, cloning of rice nitrogen utilization related genes based on whole genome association analysis, cloning of rice nitrogen utilization related genes using mutants, and cloning of rice nitrogen utilization related genes using reverse genetics. At the same time, the future research in this field was prospected. This paper provides a reference for the research of nitrogen efficient utilization genes and nitrogen efficient utilization breeding in rice.

参考文献/References:

[1]SHI J X, AN G, WEBER A P M, et al. Prospects for rice in 2050[J]. Plant,Cell & Environment,2023,46(4):1037-1045.
[2]GRUBER N, GALLOWAY J N. An earth-system perspective of the global nitrogen cycle[J]. Nature,2008,451:293-296.
[3]SCHULTE-UEBBING L F, BEUSEN A H W, BOUWMAN A F, et al. From planetary to regional boundaries for agricultural nitrogen pollution[J]. Nature,2022,610:507-512.
[4]HE W T, JIANG R, HE P, et al. Estimating soil nitrogen balance at regional scale in China’s croplands from 1984 to 2014[J]. Agricultural Systems,2018,167:125-135.
[5]YIN Y L, ZHAO R F, YANG Y, et al. A steady-state N balance approach for sustainable smallholder farming[J]. PNAS,2021,118(39):e2106576118.
[6]XU G H, FAN X R, MILLER A J. Plant nitrogen assimilation and use efficiency[J]. Annual Review of Plant Biology,2012,63:153-182.
[7]WEI J, ZHENG Y, FENG H M, et al. OsNRT2.4 encodes a dual-affinity nitrate transporter and functions in nitrate-regulated root growth and nitrate distribution in rice[J]. Journal of Experimental Botany,2018,69(5):1095-1107.
[8]XIA X D, FAN X R, WEI J, et al. Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport[J]. Journal of Experimental Botany,2015,66(1):317-331.
[9]FAN X R, NAZ M, FAN X R, et al. Plant nitrate transporters:from gene function to application[J]. Journal of Experimental Botany,2017,68(10):2463-2475.
[10]LI C, TANG Z, WEI J, et al. The OsAMT1. 1 gene functions in ammonium uptake and ammonium-potassium homeostasis over low and high ammonium concentration ranges[J]. Journal of Genetics and Genomics,2016,43(11):639-649.
[11]WU X Y, XIE X X, YANG S, et al. OsAMT1;1 and OsAMT1;2 coordinate root morphological and physiological responses to ammonium for efficient nitrogen foraging in rice[J]. Plant and Cell Physiology,2022,63(9):1309-1320.
[12]LEE S, MARMAGNE A, PARK J, et al. Concurrent activation of OsAMT1;2 and OsGOGAT1 in rice leads to enhanced nitrogen use efficiency under nitrogen limitation[J]. Plant Journal,2020,103(1):7-20.
[13]GUO N, HU J Q, YAN M, et al. Oryza sativa Lysine-Histidine-type Transporter 1 functions in root uptake and root-to-shoot allocation of amino acids in rice[J]. Plant Journal,2020,103(1):395-411.
[14]TABUCHI M, SUGIYAMA K, ISHIYAMA K, et al. Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1[J]. Plant Journal,2005,42(5):641-651.
[15]REN Z H, GAO J P, LI L G, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter[J]. Nature Genetics,2005,37(10):1141-1146.
[16]LI X M, CHAO D Y, WU Y, et al. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice[J]. Nature Genetics,2015,47(7):827-833.
[17]SI L Z, CHEN J Y, HUANG X H, et al. OsSPL13 controls grain size in cultivated rice[J]. Nature Genetics,2016,48(4):447-456.
[18]YANO K, YAMAMOTO E, AYA K, et al. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice[J]. Nature Genetics,2016,48(8):427-434.
[19]ZHAO K Y, TUNG C W, EIZENGA G C, et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa[J]. Nature Communications,2011,2:467.
[20]ZHANG Y J, TAN L B, ZHU Z F, et al. TOND1 confers tolerance to nitrogen deficiency in rice[J]. Plant Journal,2015,81(3):367-376.
[21]YANG X H, XIA X Z, ZHANG Z Q, et al. QTL mapping by whole genome re-sequencing and analysis of candidate genes for nitrogen use efficiency in rice[J]. Frontiers in Plant Science,2017,8:1634.
[22]YANG X H, NONG B X, CHEN C, et al. OsNPF3.1, a member of the NRT1/PTR family, increases nitrogen use efficiency and biomass production in rice[J]. The Crop Journal,2023,11(1):108-118.
[23]SUN H Y, QIAN Q, WU K, et al. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice[J]. Nature Genetics,2014,46(6):652-656.
[24]HUANG X Z, QIAN Q, LIU Z B, et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nature Genetics,2009,41(4):494-497.
[25]HU B, WANG W, OU S J, et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies[J]. Nature Genetics,2015,47(7):834-838.
[26]GAO Z Y, WANG Y F, CHEN G, et al. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency[J]. Nature Communications,2019,10(1):5279.
[27]LI S, TIAN Y H, WU K, et al. Modulating plant growth-metabolism coordination for sustainable agriculture[J]. Nature,2018,560:595-600.
[28]ZHANG S Y, ZHU L M, SHEN C B, et al. Natural allelic variation in a modulator of auxin homeostasis improves grain yield and nitrogen use efficiency in rice[J]. Plant Cell,2021,33(3):566-580.
[29]HUANG Y Z, JI Z, TAO Y J, et al. Improving rice nitrogen-use efficiency by modulating a novel monouniquitination machinery for optimal root plasticity response to nitrogen[J]. Nature Plants,2023,9(11):1902-1914.
[30]GAO Y H, XU Z P, ZHANG L J, et al. MYB61 is regulated by GRF4 and promotes nitrogen utilization and biomass production in rice[J]. Nature Communications,2020,11(1):1-12.
[31]TANG W J, YE J, YAO X M, et al. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice[J]. Nature Communications,2019,10(1):5279.
[32]YU J, XUAN W, TIAN Y L, et al. Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice[J]. Plant Biotechnology Journal,2021,19(1):167-176.
[33]LIU X L, TIAN Y L, CHI W C, et al. Alternative splicing of OsGS1;1 affects nitrogen-use efficiency, grain development, and amylose content in rice[J]. Plant Journal,2022,110(6):1751-1762.
[34]LIU Y Q, WANG H R, JIANG Z M, et al. Genomic basis of geographical adaptation to soil nitrogen in rice[J]. Nature,2021,590:600-605.
[35]YANG X L, NIAN J Q, XIE Q J, et al. Rice ferredoxin-dependent glutamate synthase regulates nitrogen-carbon metabolomes and is genetically differentiated between japonica and indica subspecies[J]. Molecular Plant,2016,9(11):1520-1534.
[36]WANG Q, NIAN J Q, XIE X Z, et al. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice[J]. Nature Communications,2018,9(1):735.
[37]WANG Q, SU Q M, NIAN J Q, et al. The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice[J]. Molecular Plant,2021,14(6):1012-1023.
[38]WU K, WANG S K, SONG W Z, et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice[J]. Science,2020,367. DOI:10.1126/science.aaz2046.
[39]XIE Y M, LV Y D, JIA L T, et al. Plastid-localized amino acid metabolism coordinates rice ammonium tolerance and nitrogen use efficiency[J]. Nature Plants,2023,9(9):1514-1529.
[40]FAN X R, TANG Z, TAN Y W, et al. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields[J]. PNAS,2016,113(26):7118-7123.
[41]XIE W B, WANG G W, YUAN M, et al. Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection[J]. PNAS,2015,112(39):5411-5419.
[42]ZHANG Y, TATEISHI-KARIMATA H, ENDOH T, et al. High-temperature adaptation of an OsNRT2.3 allele is thermoregulated by small RNAs[J]. Science Advances,2022,8(47). DOI: 10.1126/sciadv.adc9785
[43]WANG C L, WANG J, LU J Y, et al. A natural gene drive system confers reproductive isolation in rice[J]. Cell,2023,186(17):3577-3592.
[44]赵彭辉,费良军,刘大有. 土表致密层形成下肥液膜孔灌入渗土壤水氮分布[J]. 排灌机械工程学报,2023,41(7):709-715.
[45]刘中良,高俊杰,陈震,等. 氮肥减量配施有机肥对大白菜产量、品质及氮肥利用率的影响[J]. 排灌机械工程学报,2022,40(11):1138-1144.
[46]KHAIPHO-BURCH M, COOPER M, CROSSA J, et al. Genetic modification can improve crop yields——but stop overselling it[J]. Nature,2023,621:470-473.
[47]WANG W, HU B, YUAN D Y, et al. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice[J]. Plant Cell,2018,30(3):638-651.
[48]YAN M, FAN X R, FENG H M, et al. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges[J]. Plant, Cell & Environment,2011,34(8):1360-1372.

相似文献/References:

[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
 WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(03):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
 WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(03):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
 YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(03):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
 LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(03):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
 WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(03):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
 SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(03):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
 ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(03):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
 YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(03):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
 LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(03):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
 GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(03):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
[11]赵凌,张勇,朱镇,等.南粳系列品种氮素利用效率初探[J].江苏农业学报,2022,38(05):1153.[doi:doi:10.3969/j.issn.1000-4440.2022.05.001]
 ZHAO Ling,ZHANG Yong,ZHU Zhen,et al.Study on nitrogen use efficiency of Nanjing series japonica rice varieties[J].,2022,38(03):1153.[doi:doi:10.3969/j.issn.1000-4440.2022.05.001]

备注/Memo

备注/Memo:
收稿日期:2024-02-25基金项目:国家自然科学基金青年科学基金项目(32302672);江苏省自然科学基金青年基金项目(BK20210153);江苏省农业科技自主创新基金项目[CX(22)3140];江苏省种业创新“揭榜挂帅”项目[JBGS(2021)012]作者简介:唐伟杰(1989-),男,汉族,山东莱阳人,博士,助理研究员,主要从事水稻氮高效利用遗传研究。(E-mail)weijiet08@126.com通讯作者:张云辉,(E-mail)zyhrice@163.com
更新日期/Last Update: 2024-05-20