[1]潘国俊,卢信,杨振泉,等.复合改性生物炭的吸附特性及其对轻中度镉污染农田土壤的钝化效应[J].江苏农业学报,2024,(03):457-468.[doi:doi:10.3969/j.issn.1000-4440.2024.03.008]
 PAN Guo-jun,LU Xin,YANG Zhen-quan,et al.Adsorption characteristics of composite modified biochar and its passivation effect on farmland soil with light to moderate cadmium pollution[J].,2024,(03):457-468.[doi:doi:10.3969/j.issn.1000-4440.2024.03.008]
点击复制

复合改性生物炭的吸附特性及其对轻中度镉污染农田土壤的钝化效应()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年03期
页码:
457-468
栏目:
耕作栽培·资源环境
出版日期:
2024-03-30

文章信息/Info

Title:
Adsorption characteristics of composite modified biochar and its passivation effect on farmland soil with light to moderate cadmium pollution
作者:
潘国俊12卢信2杨振泉1陈丙法2耿淑芳2樊广萍2高岩2尹小乐2
(1.扬州大学食品科学与工程学院,江苏扬州225009;2.江苏省农业科学院农业资源与环境研究所/农业农村部长江下游平原农业环境重点实验室,江苏南京210014)
Author(s):
PAN Guo-jun12LU Xin2YANG Zhen-quan1CHEN Bing-fa2GENG Shu-fang2FAN Guang-ping2GAO Yan2YIN Xiao-le2
(1.College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China;2.Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment in the Lower Yangtze River Plain of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)
关键词:
改性生物炭重金属吸附性能钝化
Keywords:
modified biocharcadmiumheavy metaladsorption propertiespassivation
分类号:
S151.9+3
DOI:
doi:10.3969/j.issn.1000-4440.2024.03.008
摘要:
农田土壤中的镉污染会导致作物中的镉过量累积,而作物中的镉会通过食物链传递给人,从而严重威胁人体健康,因此迫切需要采取合理的应对措施。本研究旨在将不同材料[氢氧化钾(K)、凹凸棒土(A)、钙镁磷肥(M)和聚丙烯酰胺(P)]与生物炭混合后进行球磨改性(Q)处理,通过吸附平衡试验、盆栽试验研究改性生物炭对镉的吸附特性及其对镉污染土壤的钝化效果。结果表明,与未改性生物炭(YC)相比,改性生物炭具有更丰富的官能团和矿物元素,对镉的吸附动力学曲线符合准二级动力学方程,吸附方式主要表现为单分子层吸附。pH值、温度的升高可以提高生物炭对镉离子的吸附能力。在土壤中添加生物炭可以显著提高土壤的pH值和养分含量,并且降低土壤有效镉含量,其中添加氢氧化钾+凹凸棒土+钙镁磷肥+聚丙烯酰胺球磨改性的生物炭(QKAMP)和添加氢氧化钾+凹凸棒土+聚丙烯酰胺球磨改性的生物炭(QKAM)分别可使土壤有效镉含量较对照(CK)显著降低25.5%、23.4%(P<0.05)。与添加未改性生物炭(YC)的处理相比,添加QKAMP、QKAM处理的土壤中有效镉含量分别显著降低了16.84%、14.57%(P<0.05)。此外,与对照相比,添加QKAMP、QKAM分别可使小青菜地上部的镉含量显著降低36.1%、33.6%;与未添加改性生物炭处理(YC)相比,添加QKAMP、QKAM处理小青菜地上部的镉含量分别显著降低了21.6%、18.6%。由此可见,QKAMP作为一种重金属钝化材料,可以更好地降低中性(pH值7.07)、轻中度镉污染(≤1.75 mg/kg)土壤中镉的生物有效性,确保农产品安全生产。
Abstract:
Cadmium (Cd) pollution in farmland soil leads to excessive Cd in crops, which can be transferred to humans through the food chain, posing a significant threat to human health. Therefore, it is urgent to take reasonable countermeasures. The purpose was to mix different materials (potassium hydroxide: K, attapulgite: A, calcium magnesium phosphate fertilizer: M, polyacrylamide: P) with biochar for ball milling modified (Q) treatment. The Cd adsorption performance of the modified biochar and its passivation effect on Cd-contaminated agricultural soils were investigated through adsorption equilibrium and pot experiments. The results showed that the modified biochar had richer functional groups and mineral elements than the unmodified biochar (YC). The adsorption kinetics curve of Cd adsorption was in accordance with the proposed second-order kinetic equation. The adsorption mode of Cd was mainly monolayer adsorption. The increase of pH value and temperature could improve the adsorption capacity of cadmium ions by biochar. The addition of biochar to the soil significantly increased the soil pH value and nutrient content, and reduced the bioavailable cadmium content in the soil. Among them, the application of biochar + potassium hydroxide + attapulgite + calcium-magnesium-phosphorus fertilizer + polyacrylamide ball-milled modified biochar (QKAMP) and biochar + potassium hydroxide + attapulgite + polyacrylamide ball-milled modified biochar (QKAM) significantly reduced the bioavailable Cd content by 25.5% and 23.4% (P<0.05), respectively, compared with the control (CK), and significantly reduced the bioavailable Cd content by 16.84% and 14.57% (P<0.05), respectively, compared with unmodified biochar (YC) treatment. Meanwhile, the addition of QKAMP and QKAM significantly reduced the cadmium content in Brassica rapa var. chinensis (Linnaeus) Kitamura aerial part by 36.1% and 33.6%, respectively, compared with the control (CK), and by 21.6% and 18.6%, respectively, compared with the unmodified biochar treatment. It can be seen that, as a heavy metal passivation material, QKAMP is more effective in reducing the bioavailability of cadmium in cadmium-contaminated soils (pH 7.07, cadmium content≤1.75 mg/kg) and ensuring the safe production of agricultural products.

参考文献/References:

[1]孙铁珩,周启星. 污染生态学的研究前沿与展望[J]. 农村生态环境,2000(3):42-45,50.
[2]环境保护部,国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业,2014(5):10-11.
[3]李岭,刘冬,吕银斐,等. 生物炭施用对镉污染土壤中烤烟品质和镉含量的影响[J]. 华北农学报,2014,29(2):228-232.
[4]杨亚丽,李友丽,陈青云,等. 土壤铅、镉、铬对蔬菜发育影响及迁移规律的研究进展[J]. 华北农学报,2015,30(增刊1):511-517.
[5]BOZKURT S, MORENO L, NERETNIEKS I. Long-term processes in waste deposits[J]. Science of the Total Environment,2000,250(1/2/3):101-121.
[6]GUPTA D K, HUANG H G, CORPAS F J. Lead tolerance in plants: strategies for phytoremediation[J]. Environmental Science and Pollution Research,2013,20(4):2150-2161.
[7]赵本行,陈康姜,何楚斌,等. 大豆作物对污染土壤中重金属镉的富集研究[J]. 天津农业科学,2013,19(11):15-17.
[8]李婧,周艳文,陈森,等. 我国土壤镉污染现状、危害及其治理方法综述[J]. 安徽农学通报,2015,21(24):104-107.
[9]曹心德,魏晓欣,代革联,等. 土壤重金属复合污染及其化学钝化修复技术研究进展[J]. 环境工程学报,2011,5(7):1441-1453.
[10]GARAU G, CASTALDI P, SANTONA L,et al. Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil[J]. Geoderma,2007,142(1/2):47-57.
[11]TAN X F, LIU Y G, ZENG G M, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere,2015,125:70-85.
[12]LIU Z G, ZHANG F S. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass[J]. Journal of Hazardous Materials,2009,167(1/2/3):933-939.
[13]YAASHIKAA P R, KUMAR P S, VARJANI S, et al. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy[J]. Biotechnology Reports,2020,28:e00570.
[14]陈再明,方远,徐义亮,等. 水稻秸秆生物碳对重金属Pb2+的吸附作用及影响因素[J]. 环境科学学报,2012,32(4):769-776.
[15]WU J W, WANG T, WANG J W, et al. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: enhanced the ion exchange and precipitation capacity[J]. Science of the Total Environment,2021,754:142150.
[16]郭丹丹,翟小伟. 改性生物炭对Pb2+和Cd2+吸附性能及机理研究[J]. 应用化工,2023,52(3):769-774.
[17]尤凌聪,汪玉瑛,刘玉学,等. 生物炭-凹凸棒土复合材料对水稻土锌镉的钝化及土壤养分和酶活性的影响研究[J]. 核农学报,2021,35(7):1717-1723.
[18]孙家婉. 改性生物炭对土壤中镉的钝化效果及机理研究[D]. 淮安: 淮阴工学院,2022.
[19]占国艳,陈振宁,童非,等. 不同秸秆材料与制备工艺下生物炭性质及对土壤重金属的钝化效应[J]. 生态与农村环境学报,2021,37(1):86-95.
[20]郑庆福,王志民,陈保国,等. 制备生物炭的结构特征及炭化机理的XRD光谱分析[J]. 光谱学与光谱分析,2016,36(10):3355-3359.
[21]TAN L S, MA Z H, YANG K Q, et al. Effect of three artificial aging techniques on physicochemical properties and Pb adsorption capacities of different biochars[J]. Science of the Total Environment,2020,699:134223.
[22]ZHU S H, ZHAO J J, ZHAO N, et al. Goethite modified biochar as a multifunctional amendment for cationic Cd(Ⅱ), anionic As(Ⅲ), roxarsone, and phosphorus in soil and water[J]. Journal of Cleaner Production,2020,247:119579.
[23]CHEN B L, ZHOU D D, ZHU L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science & Technology,2008,42(14):5137-5143.
[24]QIU Y P, CHENG H Y, XU C, et al. Surface characteristics of crop-residue-derived black carbon and lead(Ⅱ) adsorption[J]. Water Research,2008,42(3):567-574.
[25]KEILUWEIT, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology,2010,44(4):1247-1253.
[26]TANG J C, LV H H,GONG Y Y,et al. Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal[J]. Bioresource Technology,2015,196:355-363.
[27]LI T T, TONG Z H, GAO B, et al. Polyethyleneimine-modified biochar for enhanced phosphate adsorption[J]. Environmental Science and Pollution Research,2020,27(7):7420-7429.
[28]鲁秀国,郑宇佳,武今巾. 改性核桃壳生物炭对模拟水样中Pb(Ⅱ)的吸附性能研究[J]. 离子交换与吸附,2021,37(1):26-41.
[29]周其文. 生物炭-铁锰氧化物复合材料调控稻田土壤镉有效性机制[D]. 长沙: 中南林业科技大学,2019.
[30]ZHOU Q W, LIAO B H, LIN L N, et al. Adsorption of Cu(Ⅱ) and Cd(Ⅱ) from aqueous solutions by ferromanganese binary oxide-biochar composites[J]. Science of the Total Environment,2018,615:115-122.
[31]杜文慧,朱维琴,潘晓慧,等. 牛粪源蚓粪及其生物炭对Pb2+、Cd2+的吸附特性[J]. 环境科学,2017,38(5):2172-2181.
[32]徐楠楠,林大松,徐应明,等. 玉米秸秆生物炭对Cd2+的吸附特性及影响因素[J]. 农业环境科学学报,2014,33(5):958-964.
[33]REES F, SIMONNOT M O, MOREL J L. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase[J]. European Journal of Soil Science,2014,65(1):149-161.
[34]李飞跃,沈皖豫,吴旋,等. 生物炭复配矿物质钝化修复重金属复合污染土壤的研究[J]. 土壤通报,2020,51(1):195-200.
[35]王建乐,谢仕斌,涂国权,等. 多种材料对铅镉污染农田土壤原位修复效果的研究[J]. 农业环境科学学报,2019,38(2):325-332.
[36]曾爱,廖允成,张俊丽,等. 生物炭对塿土土壤含水量、有机碳及速效养分含量的影响[J]. 农业环境科学学报,2013,32(5):1009-1015.
[37]库涵璐. 改性生物炭及其老化对土壤重金属镉钝化效应的影响[D]. 徐州:中国矿业大学,2022.
[38]高琳琳,鲍广灵,张宁,等. 土壤重金属有效态纳入农田土壤环境质量标准探讨[J]. 安徽农学通报,2021,27(10):105-109,114.
[39]赵莎莎,肖广全,陈玉成,等. 不同施用量石灰和生物炭对稻田镉污染钝化的延续效应[J]. 水土保持学报,2021,35(1):334-340.
[40]WAGNER A, KAUPENJOHANN M. Suitability of biochars (pyro- and hydrochars) for metal immobilization on former sewage-field soils[J]. European Journal of Soil Science,2014,65(1):139-148.
[41]BIAN R J, JOSEPH S, CUI L Q, et al. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment[J]. Journal of Hazardous Materials,2014,272:121-128.
[42]刘慧,孙秀兰. 生物炭对土壤镉的固化效果及韭菜生长的影响[J]. 中国瓜菜,2023,36(12):113-119.
[43]ABBAS T, RIZWAN M, ALI S, et al. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination[J]. Ecotoxicology and Environmental Safety,2017,140:37-47.
[44]孙家婉,张振华,赵玉萍,等. 生物炭改性及其在农田土壤重金属修复中的应用研究进展[J]. 江苏农业科学,2022,50(10):9-15.
[45]顾鑫才,陈丙法,刘宏,等. 改良生物炭吸附/降解水中有机污染物研究进展[J]. 江苏农业学报,2023,39(3):873-880.
[46]黄安香,柏文恋,王忠伟,等. 壳聚糖改性竹生物炭对土壤外源污染镉形态分布的影响[J]. 江苏农业科学,2022,50(15):195-202.

相似文献/References:

[1]尹微琴,孟莉蓉,郁彬琦,等.垫料生物炭对土壤镉的钝化作用[J].江苏农业学报,2018,(01):62.[doi:doi:10.3969/j.issn.1000-4440.2018.01.009]
 YIN Wei-qin,MENG Li-rong,YU Bin-qi,et al.Passivation of Cd in soil by bedding materials derived-biochar[J].,2018,(03):62.[doi:doi:10.3969/j.issn.1000-4440.2018.01.009]
[2]朱守晶,史文娟,揭雨成.不同苎麻品种对土壤中镉、铅富集的差异[J].江苏农业学报,2018,(02):320.[doi:doi:10.3969/j.issn.1000-4440.2018.02.014]
 ZHU Shou-jing,SHI Wen-juan,JIE Yu-cheng.Variety difference in cadmium and lead accumulation by ramie (Boehmeria nivea) from soil[J].,2018,(03):320.[doi:doi:10.3969/j.issn.1000-4440.2018.02.014]
[3]孟莉蓉,俞浩丹,杨婷婷,等.2种生物炭对Pb、Cd污染土壤的修复效果[J].江苏农业学报,2018,(04):835.[doi:doi:10.3969/j.issn.1000-4440.2018.04.017]
 MENG Li-rong,YU Hao-dan,YANG Ting-ting,et al.Immobilization of two biochars to Pb, Cd in contaminated soils[J].,2018,(03):835.[doi:doi:10.3969/j.issn.1000-4440.2018.04.017]
[4]张海涛,郭西亚,张杰,等.铜绿微囊藻对锌、镉胁迫的生理响应[J].江苏农业学报,2019,(01):33.[doi:doi:10.3969/j.issn.1000-4440.2019.01.005]
 ZHANG Hai-tao,GUO Xi-ya,ZHANG Jie,et al.Physiological response of Microcystis aeruginosa to Zn2+ and Cd2+ stresses[J].,2019,(03):33.[doi:doi:10.3969/j.issn.1000-4440.2019.01.005]
[5]倪幸,黄其颖,叶正钱.竹炭施用对土壤镉形态转化和小麦镉积累的影响[J].江苏农业学报,2019,(04):818.[doi:doi:10.3969/j.issn.1000-4440.2019.04.010]
 NI Xing,HUANG Qi ying,YE Zheng qian.Effects of bamboo biochar application on cadmium morphological transformation in soil and cadmium accumulation in wheat[J].,2019,(03):818.[doi:doi:10.3969/j.issn.1000-4440.2019.04.010]
[6]彭云霄,彭炜东,余江,等.大田与盆栽条件下重金属镉赋存形态差异[J].江苏农业学报,2019,(06):1368.[doi:doi:10.3969/j.issn.1000-4440.2019.06.014]
 PENG Yun-xiao,PENG Wei-dong,YU Jiang,et al.Differences of heavy metal cadmium fractions in field-pot planting[J].,2019,(03):1368.[doi:doi:10.3969/j.issn.1000-4440.2019.06.014]
[7]高欣,邓芸,季蒙蒙,等.氨基酸盐对镉污染土壤的淋洗效果[J].江苏农业学报,2020,(02):366.[doi:doi:10.3969/j.issn.1000-4440.2020.02.016]
 GAO Xin,DENG Yun,JI Meng-meng,et al.Leaching effect of amino acid salts on cadmium contaminated soil[J].,2020,(03):366.[doi:doi:10.3969/j.issn.1000-4440.2020.02.016]
[8]白珊,倪幸,杨瑗羽,等.不同原材料生物炭对土壤重金属Cd、Zn的钝化作用[J].江苏农业学报,2021,(05):1199.[doi:doi:10.3969/j.issn.1000-4440.2021.05.015]
 BAI Shan,NI Xing,YANG Yuan-yu,et al.Immobilization of soil cadmium and zinc by different raw material derived biochars[J].,2021,(03):1199.[doi:doi:10.3969/j.issn.1000-4440.2021.05.015]
[9]谭秀慧,杨洪生,黄鸿兵,等.江苏省中华绒螯蟹镉残留现状与健康风险评价[J].江苏农业学报,2021,(05):1305.[doi:doi:10.3969/j.issn.1000-4440.2021.05.028]
 TAN Xiu-hui,YANG Hong-sheng,HUANG Hong-bing,et al.Cadmium content in Eriocheir sinensis in Jiangsu Province and health risk assessment[J].,2021,(03):1305.[doi:doi:10.3969/j.issn.1000-4440.2021.05.028]
[10]史高玲,周东美,余向阳,等.水稻和小麦累积镉和砷的机制与阻控对策[J].江苏农业学报,2021,(05):1333.[doi:doi:10.3969/j.issn.1000-4440.2021.05.032]
 SHI Gao-ling,ZHOU Dong-mei,YU Xiang-yang,et al.Mechanisms of cadmium and arsenic accumulation in rice and wheat and related mitigation strategies[J].,2021,(03):1333.[doi:doi:10.3969/j.issn.1000-4440.2021.05.032]

备注/Memo

备注/Memo:
收稿日期:2024-01-12基金项目:江苏省农业科技自主创新基金项目[CX(20)1010]作者简介:潘国俊(1993-),男,江苏兴化人,硕士研究生,从事重金属污染土壤修复方面的研究。(E-mail)1226416147@qq.com
更新日期/Last Update: 2024-05-20