[1]潘娇艳,肖世伟,夏瑾,等.绿色草莓再生体系的建立[J].江苏农业学报,2024,(01):174-182.[doi:doi:10.3969/j.issn.1000-4440.2024.01.019]
 PAN Jiao-yan,XIAO Shi-wei,XIA Jin,et al.The establishment of regeneration system of Fragaria viridis Weston[J].,2024,(01):174-182.[doi:doi:10.3969/j.issn.1000-4440.2024.01.019]
点击复制

绿色草莓再生体系的建立()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年01期
页码:
174-182
栏目:
园艺
出版日期:
2024-01-30

文章信息/Info

Title:
The establishment of regeneration system of Fragaria viridis Weston
作者:
潘娇艳1肖世伟1夏瑾2倪知游1邹雨婷1乔玉山12
(1.南京农业大学园艺学院,江苏南京210095;2.江苏省农业科学院果树研究所/江苏省高效园艺作物遗传改良重点实验室,江苏南京210014)
Author(s):
PAN Jiao-yan1XIAO Shi-wei1XIA Jin2NI Zhi-you1ZOU Yu-ting1QIAO Yu-shan12
(1.College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;2.Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China)
关键词:
绿色草莓愈伤组织再生遗传转化体系
Keywords:
Fragaria viridis Westoncallusregeneration genetic transformation system
分类号:
S668.4
DOI:
doi:10.3969/j.issn.1000-4440.2024.01.019
文献标志码:
A
摘要:
建立高效、稳定的绿色草莓再生体系是构建其遗传转化体系的基础。本研究以绿色草莓匍匐茎茎尖为外植体,置于不同培养基中进行初代培养获得试管苗。在含有不同配比植物生长调节剂的培养基中对叶龄为30 d的试管苗叶盘进行脱分化处理。以叶盘诱导产生的愈伤组织为试验材料,探究不同植物生长调节剂对愈伤组织产生不定芽的影响。结果表明,最适用于绿色草莓初代培养的培养基是MS+0.2 mg/L 6-苄氨基嘌呤(6-BA)+0.2 mg/L 赤霉素(GA3),在此培养基中绿色草莓离体茎尖成活率最高,生长状况最好;诱导叶盘脱分化、愈伤组织再分化和诱导不定芽生根的适宜培养基分别是MS+1.5 mg/L 2,4-二氯苯氧乙酸(2,4-D)+2.0 mg/L 噻苯隆(TDZ)、1/2 MS+1.5 mg/L 6-BA+0.1 mg/L吲哚丁酸(IBA)和1/2 MS+0.2 mg/L IBA+0.1 mg/L吲哚乙酸(IAA),其出愈率、再分化率和生根率分别为100%、91.0%、100%。本研究建立了以绿色草莓匍匐茎茎尖为试验材料获得试管苗的组织快繁体系和以叶盘为外植体经脱分化、愈伤组织再分化2个阶段的再生体系,为建立其遗传转化体系奠定了技术基础。
Abstract:
The establishment of an efficient and stable regeneration system of Fragaria viridis Weston is the basis of its genetic transformation system. In this study, the stolon tips of Fragaria viridis Weston were used as explants and placed in different media for primary culture to obtain test-tube seedlings. The leaf discs of test-tube plantlets with leaf age of 30 days were dedifferentiated in the medium containing different ratios of plant growth regulators. The calluses induced by leaf discs were used as materials to explore the effects of different plant growth regulators on adventitious buds. The results showed that the most suitable medium for primary culture of Fragaria viridis Weston was MS+0.2 mg/L N-(phenylmethyl)-9H-purin-6-amine (6-BA)+0.2 mg/L gibberellin A3 (GA3). In this medium, the survival rate of Fragaria viridis Weston shoot tips in vitro was the highest and the growth condition was the best. The suitable media for inducing leaf discs dedifferentiation, callus redifferentiation and adventitious bud rooting were MS+1.5 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D )+2.0 mg/L thidiazuron (TDZ), 1/2 MS+1.5 mg/L 6-BA+0.1 mg/L 3-indolebutyric acid (IBA) and 1/2 MS+0.2 mg/L IBA+0.1 mg/L 3-indoleacetic acid (IAA), respectively. The callus incidence, redifferentiation rate and rooting rate were 100%, 91.0% and 100%, respectively. In this study, the tissue rapid propagation system using the stolon tips of Fragaria viridis Weston as experimental materials and a regeneration system using leaf discs as explants through dedifferentiation and callus redifferentiation were established, which laid a technical foundation for the establishment of its genetic transformation system.

参考文献/References:

[1]张红梅,王俊丽. “全明星”草莓叶片再生体系的建立[J]. 生物技术,2005,15(5):75-76.
[2]王玉华,郝建国,贾敬芬. ‘早红’草莓高效遗传转化受体系统的建立[J]. 基因组学与应用生物学,2009,28(5):990-997.
[3]向发云,韩永超,曾祥国,等. ‘晶瑶’草莓高效再生及遗传转化体系的建立[J]. 中国农学通报,2017,33(15):36-42.
[4]王翠华,刘荇,杜小云,等. 红颜草莓叶盘再生及遗传转化体系的优化[J]. 生物资源,2020,42(2):234-242.
[5]刘玲,葛春峰,王涛,等. 黄毛草莓叶片离体再生及其同源四倍体的诱导[J]. 核农学报,2017,31(1): 51-58.
[6]EL MANSOURI I, MERCADO J A, VALPUESTA V, et al. Shoot regeneration and Agrobacterium-mediated transformation of Fragaria vesca L[J]. Plant Cell Reports,1996,15(8):642-646.
[7]ALSHEIKH M K, SUSO H P, ROBSON M, et al. Appropriate choice of antibiotic and Agrobacterium strain improves transformation of antibiotic-sensitive Fragaria vesca and F. v. semperflorens[J]. Plant Cell Reports,2002,20(12):1173-1180.
[8]YILDIRIM A B, TURKER A U. Effects of regeneration enhancers on micropropagation of Fragaria vesca L. and phenolic content comparison of field-grown and in vitro-grown plant materials by liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS)[J]. Scientia Horticulturae,2014,169:169-178.
[9]OOSUMI T, GRUSZEWSKI H A, BLISCHAK L A, et al. High-efficiency transformation of the diploid strawberry (Fragaria vesca) for functional genomics[J]. Planta,2006,223(6):1219-1230.
[10]周鹤莹,张玮,张卿,等. 森林草莓‘Hawaii4’高效遗传转化系统的建立[J]. 北京农学院学报,2015,30(1):10-14.
[11]乔瑞琪,金万梅,沈元月. 二倍体草莓‘Ruegen’再生体系的建立[J]. 北京农学院学报,2018,33(3):35-39.
[12]缑一杰,冯嘉玥,苏新雷,等. 野生二倍体草莓子叶的再生体系建立[J]. 贵州农业科学,2022,50(11):101-106.
[13]王燕,陈丙义,章镇,等. 黄毛草莓组织培养与快繁技术研究[J]. 西南农业学报,2012,25(1):252-256.
[14]GRUNER P, ULRICH D, NEINHUIS C, et al. Fragaria viridis Weston: diversity and breeding potential of an underutilised strawberry species[J]. Acta Horticulturae,2017(1156): 203-208.
[15]韩如春,常婧,赵静,等. 草莓茎尖组培快繁体系的建立[J]. 山西农业科学,2022,50(1):15-21.
[16]于超,孙秀霞,薛琳. 草莓组织培养与快速繁殖技术[J]. 新疆农垦科技,2017,40(2):53-55.
[17] QUIROZ K A, BERROS M, CARRASCO B, et al. Meristem culture and subsequent micropropagation of Chilean strawberry (Fragaria chiloensis (L.) Duch.)[J]. Biological Research, 2017.DOI:10.1186/s40659-017-0125-8.
[18]肖君泽,黄益鸿,姜放军,等. 章姬草莓花药组织培养脱毒快速繁殖技术的研究[J]. 江西农业学报,2011,23(10):49-50,54.
[19]张建盈,郭玲娟,张立田,等. “白雪公主”草莓茎尖组培快繁体系研究[J]. 中国南方果树,2019,48(1):94-97.
[20]姚思扬,赵春莉,刘子平,等. 红颜草莓组培快繁体系优化[J]. 福建农业学报,2018,33(9):950-956.
[21]PASSEY A, BARRETT K, JAMES D. Adventitious shoot regeneration from seven commercial strawberry cultivars (Fragaria x ananassa Duch.) using a range of explant types[J]. Plant Cell Reports,2003,21(5):397-401.
[22]NEHRA N S, STUSHNOFF C, KARTHA K K. Direct shoot regeneration from strawberry leaf disks[J]. Journal of the American Society for Horticultural Science,1989,114(6):1014-1018.
[23]王翡,高志红,章镇,等. 草莓高效离体叶片再生体系的建立[J]. 西北植物学报,2010,30(5):1045-1049.
[24]李文砚,孔方南,韦优,等. 草莓种子萌发成苗及高效离体再生体系的建立[J]. 西南农业学报,2016,29(10):2463-2469.
[25]曹善东. 组培条件对草莓脱毒试管苗玻璃化影响的研究[J]. 山东农业大学学报(自然科学版),2006,37(2):172-174,180.
[26]李坤坤,徐昌杰. 蔷薇科果树离体再生与遗传转化研究进展[J]. 园艺学报,2017,44(9):1633-1644.
[27]黄文江,潘超,阚显照,等. “红丰”草莓无菌系及叶盘再生系统的建立[J]. 西南农业学报,2010,23(5):1640-1643.
[28]SHEN X L, KANE M E, CHEN J J. Effects of genotype, explant source, and plant growth regulators on indirect shoot organogenesis in Dieffenbachia cultivars[J]. In Vitro Cellular & Developmental Biology-Plant,2008,44(4):282-288.
[29]LANDI L, MEZZETTI B. TDZ, auxin and genotype effects on leaf organogenesis in Fragaria[J]. Plant Cell Reports,2006,25(4):281-288.
[30]曹昆,李霞. 木本植物组织培养不定芽诱导研究进展[J]. 江苏林业科技,2008,35(5):43-48.
[31]王慧英. 影响植物愈伤组织形成的因素研究[J]. 聊城大学学报(自然科学版),2010,23(2):51-53.
[32]VAN NIEUWKERK J P, ZIMMERMAN R H, FORDHAM I. Thidiazuron stimulation of apple shoot proliferation in vitro[J]. Horticultural Science,1986,21(3):516-518.
[33]PREECE J E, HUETTEMAN C A, ASHBY W C, et al. Micro-and cutting propagation of silver maple. I. Results with adult and juvenile propagules[J]. Journal of the American Society for Horticultural Science,1991,116(1):142-148.
[34]SINGHA S, BHATIA S K. Shoot proliferation of pear cultures on medium containing thidiazuron and benzylamino purine[J]. HortScience,1998,23(3):803.
[35]CHUNG H H, OUYANG H Y. Use of thidiazuron for high-frequency callus induction and organogenesis of wild strawberry (Fragaria vesca)[J]. Plants,2020,10(1):67.
[36]杜梦卿,连朋,王丽娟. 不同浓度TDZ和2,4-D组合对草莓花药组织培养的影响[J]. 东北农业科学,2021,46(2):73-75,131.
[37]ALDWINCKLE H, MALONY M. Plant regeneration and transformation in the Rosaceae[J]. Transgenic Plant Journal,2009,3(1):1-39.
[38]张志宏,吴禄平,代红艳,等. 草莓主栽品种再生和转化的研究[J]. 园艺学报,2001,28(3):189-193,185.
[39]DEBNATH S C. Strawberry sepal: another explant for thidiazuron-induced adventitious shoot regeneration[J]. In Vitro Cellular & Developmental Biology-Plant,2005,41(5):671-676.
[40]YONGHUA Q, SHANGLONG Z, ASGHAR S, et al. Regeneration mechanism of Toyonoka strawberry under different color plastic films[J]. Plant Science,2005,168(6):1425-1431.
[41]YEASMIN S, BANU T A, GOSWAMI B, et al. In vitro regeneration of strawberry plant from leaf explants via callus induction[J]. Plant Tissue Culture and Biotechnology,2022,32(1):67-75.
[42]ZAKARIA H, HUSSEIN G M, ABDEL-HADI A H, et al. Improved regeneration and transformation protocols for three strawberry cultivars[J]. GM Crops & Food,2014,5(1):27-35.
[43]HUSAINI A M, SRIVASTAVA D K. Efficient plant regeneration from leaf and petiole explants of strawberry (Fragaria × ananassa Duch.) [J]. Phytomorphologt,2011,61:55-62.
[44]SAKILA S, AHMED M B, ROY U K, et al. Micropropagation of strawberry (Fragaria x ananassa Duch.) a newly introduced crop in Bangladesh[J]. American-Eurasian Journal of Scientific Research,2007,2(2):151-154.
[45]AKTER S, BANU T A, HABIB M A, et al. In vitro clonal multiplication of Aegle marmelos (L.) Corr. through cotylodonary node culture[J]. Bangladesh Journal of Scientific and Industrial Research,2013,48(1):13-18.
[46]梁贵秋,唐燕梅. 草莓的组织培养和快速繁殖[J]. 广西热带农业,2004(6):8-9.

备注/Memo

备注/Memo:
收稿日期:2023-02-24基金项目:国家自然科学基金项目(32072540);江苏省农业科技自主创新基金项目[CX(21)2019]作者简介:潘娇艳(1998-),女,广西贺州人,硕士研究生,主要从事草莓分子生物学研究。(E-mail)1853262521@qq.com通讯作者:乔玉山,(E-mail)qiaoyushan@njau.edu.cn
更新日期/Last Update: 2024-03-17