[1]张伟,余方伟,李建斌,等.结球甘蓝CBF家族特征分析及低温诱导基因BoCBF1、BoCBF2a和BoCBF3表达分析[J].江苏农业学报,2024,(01):156-164.[doi:doi:10.3969/j.issn.1000-4440.2024.01.017]
 ZHANG Wei,YU Fang-wei,LI Jian-bin,et al.Characterization of CBF family in cabbage and the expression analysis of low-temperature-induced genes BoCBF1, BoCBF2a, and BoCBF3[J].,2024,(01):156-164.[doi:doi:10.3969/j.issn.1000-4440.2024.01.017]
点击复制

结球甘蓝CBF家族特征分析及低温诱导基因BoCBF1、BoCBF2a和BoCBF3表达分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年01期
页码:
156-164
栏目:
园艺
出版日期:
2024-01-30

文章信息/Info

Title:
Characterization of CBF family in cabbage and the expression analysis of low-temperature-induced genes BoCBF1, BoCBF2a, and BoCBF3
作者:
张伟余方伟李建斌于利王神云
(江苏省农业科学院蔬菜研究所/江苏省高效园艺作物遗传改良重点实验室,江苏南京210014)
Author(s):
ZHANG WeiYU Fang-weiLI Jian-binYU LiWANG Shen-yun
(Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China)
关键词:
结球甘蓝CBF基因家族低温胁迫基因表达
Keywords:
cabbageCBF gene familylow temperature stressgene expression
分类号:
S635
DOI:
doi:10.3969/j.issn.1000-4440.2024.01.017
文献标志码:
A
摘要:
转录因子CBF在植物对低温胁迫的响应和增强植物的抗寒性方面发挥着重要作用。为分析结球甘蓝CBF家族成员的氨基酸序列特征,探究其是否受低温诱导表达,本研究利用结球甘蓝923全基因组数据库对其进行蛋白质理化特征、系统发育关系、编码基因结构以及2 ℃低温胁迫下编码基因表达水平分析。结果表明,共鉴定到7个BoCBF基因,系统发育分析后分成2个亚组(Ⅰ和Ⅱ)。BoCBF蛋白的氨基酸长度为203~283 aa,全部是亲水性蛋白质。在结球甘蓝02-12中,BoCBF1、BoCBF2a和BoCBF3基因在叶、花、芽和角果中基本不表达,在愈伤组织、根和茎中表达量较低。转录组测序和实时荧光定量PCR分析发现,在耐寒结球甘蓝923和不耐寒结球甘蓝D9中,BoCBF2b、BoCBF2c基因不受低温诱导表达,BoCBF2a基因低温诱导表达最为迅速,其次是BoCBF1和BoCBF3基因。BoCBF1、BoCBF2a和BoCBF3基因的相对表达量在低温胁迫3~6 h达到最大值,相对表达量达到最大值后急剧下降,在24 h降至最低。本研究结果为后续开展BoCBF1、BoCBF2a和BoCBF3基因调控结球甘蓝响应低温胁迫机理研究奠定了基础。
Abstract:
Transcription factor CBF plays an important role in response to low temperature stress and enhancing cold resistance in plants. In order to analyze the amino acid sequence characteristics of CBF family members in cabbage and explore whether the expression of BoCBF genes was induced by low temperature, the whole genome database of cabbage 923 was used to identify BoCBF gene members and analyze the protein physicochemical properties, phylogenetic relationships, gene structures, and gene expression levels under 2 ℃ low temperature stress. The results showed that a total of seven BoCBF genes were identified and divided into two subgroups (Ⅰ and Ⅱ) after phylogenetic analysis. The amino acid length of BoCBF proteins ranged from 203 aa to 283 aa, all of which were hydrophilic proteins. BoCBF1, BoCBF2a, and BoCBF3 genes were not expressed in leaves, flowers, buds and siliques of cabbage 02-12, and the expression levels were low in callus, roots and stems of cabbage 02-12. Transcriptome sequencing and real-time fluorescence quantitative PCR analysis revealed that the expression of BoCBF2b and BoCBF2c genes was not induced by low temperature in cold-intolerant cabbage 923 and cold-intolerant cabbage D9, while BoCBF2a gene was most rapidly induced by low temperature, followed by BoCBF1 and BoCBF3 genes. The relative expression levels of BoCBF1, BoCBF2a, and BoCBF3 genes reached the maximum at 3-6 h after low temperature stress and decreased sharply after reaching the maximum, and reached the lowest at 24 h. The results of the present study provide a basis for the subsequent study on the mechanism of BoCBF1, BoCBF2a and BoCBF3 genes in response to low temperature stress in cabbage.

参考文献/References:

[1]杨丽梅,方智远,庄木,等. “十二五”我国甘蓝遗传育种研究进展[J]. 中国蔬菜,2016(11):1-6.
[2]CHINNUSAMY V, ZHU J, ZHU J K. Cold stress regulation of gene expression in plants[J]. Trends in Plant Science,2007,12(10):444-451.
[3]徐磊,林碧英,林义章. 春化作用与甘蓝类蔬菜的生育障碍(综述)[J]. 亚热带植物科学,2002,31(4):73-76.
[4]张伟,余方伟,李建斌,等. 甘蓝蔗糖合成酶基因家族鉴定及响应低温胁迫表达模式分析[J]. 江苏农业科学,2021,49(2):24-32.
[5]山溪,秦文斌,张振超,等. 低温对结球甘蓝幼叶氮代谢活性及光合色素的影响[J]. 南方农业学报,2019,50(12):2728-2733.
[6]蔡青,李成琼,司军. 结球甘蓝耐寒性研究进展[J]. 长江蔬菜,2009(2):1-3.
[7]TANG K, ZHAO L, REN Y, et al. The transcription factor ICE1 functions in cold stress response by binding to the promoters of CBF and COR genes[J]. Journal of Integrative Plant Biology,2020,62(3):258-263.
[8]DING Y, SHI Y, YANG S. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants[J]. New Phytologist,2019,222(4):1690-1704.
[9]GILMOUR S J, ZARKA D G, STOCKINGER E J, et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression[J]. The Plant Journal,1998,16(4):433-442.
[10]LIU Q, KASUGA M, SAKUMA Y, et al. Two transcription factors,DREB1 and DREB2,with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression,respectively,in Arabidopsis[J]. The Plant Cell,1998,10(8):1391-1406.
[11]HAAKE V, COOK D, RIECHMANN J L, et al. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis[J]. Plant Physiology,2002,130(2):639-648.
[12]JIA Y, DING Y, SHI Y, et al. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis[J]. New Phytologist,2016,212(2):345-353.
[13]ZHAO C, ZHANG Z, XIE S, et al. Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis[J]. Plant Physiology,2016,171(4):2744-2759.
[14]JAGLO K R, KLEFF S, AMUNDSEN K L, et al. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species[J]. Plant Physiology,2001,127(3):910-917.
[15]HSIEH T H, LEE J T, YANG P T, et al. Heterology expression of the Arabidopsis C-repeat/ dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato[J]. Plant Physiology,2002,129(3):1086-1094.
[16]CHOI D W, RODRIGUEZ E M, CLOSE T J. Barley Cbf3 gene identification,expression pattern,and map location[J]. Plant Physiology,2002,129(4):1781-1787.
[17]QIN F, SAKUMA Y, LI J, et al. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L[J]. Plant and Cell Physiology,2004,45(8):1042-1052.
[18]DUBOUZET J G, SAKUMA Y, ITO Y, et al. OsDREB genes in rice,Oryza sativa L.,encode transcription activators that function in drought-,high-salt- and cold-responsive gene expression[J]. The Plant Journal,2003,33(4):751-763.
[19]GUO N, WANG S, GAO L, et al. Genome sequencing sheds light on the contribution of structural variants to Brassica oleracea diversification[J]. BMC Biology,2021,19(1):93.
[20]CHEN H, WANG T, HE X, et al. BRAD V3.0:an upgraded Brassicaceae database[J]. Nucleic Acids Research,2022,50:1432-1441.
[21]PIERLEONI A, MARTELLI P L, FARISELLI P, et al. BaCelLo:a balanced subcellular localization predictor [J]. Bioinformatics,2006,22(14):e408-e416.
[22]CHOU K C, SHEN H B. Plant-mPLoc:a top-down strategy to augment the power for predicting plant protein subcellular localization [J]. PLoS One,2010,5(6):e11335.
[23]ROZAS J, FERRER-MATA A, SNCHEZ-DELBARRIO J C, et al. DnaSP 6:DNA sequence polymorphism analysis of large data sets [J]. Molecular Biology and Evolution,2017,34(12):3299-3302.
[24]KOCH M A, HAUBOLD B, MITCHELLOLDS T, et al. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis,Arabis,and related genera (Brassicaceae) [J]. Molecular Biology Evolution,2000,17(10):1483-1498.
[25]LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method [J]. Methods,2001,25(4):402-408.
[26]CHENG F, MANDAKOVA T, WU J, et al. Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa [J]. The Plant Cell,2013,25(5):1541-1554.
[27]SHI Y, DING Y, YANG S. Cold signal transduction and its interplay with phytohormones during cold acclimation [J]. Plant and Cell Physiology,2015,56(1):7-15.
[28]MORRAN S, EINI O, PYVOVARENKO T, et al. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors [J]. Plant Biotechnology Journal,2011,9(2):230-249.
[29]ZHANG X, FOWLER S G, CHENG H, et al. Freezing-sensitive tomato has a functional CBF cold response pathway,but a CBF regulon that differs from that of freezing-tolerant Arabidopsis [J]. The Plant Journal,2004,39(6):905-919.
[30]XIAO H, SIDDIQUA M, BRAYBROOK S, et al. Three grape CBF/DREB1 genes respond to low temperature,drought and abscisic acid [J]. Plant,Cell & Environment,2006,29(7):1410-1421.

相似文献/References:

[1]顾闽峰,王乃顶,王伟义,等.NaCl胁迫对结球甘蓝幼苗生长及体内离子分布的影响[J].江苏农业学报,2015,(03):638.[doi:10.3969/j.issn.1000-4440.2015.03.028]
 GU Min-feng,WANG Nai-ding,WANG Wei-yi,et al.Growth and ion distribution of NaCl-stressed Brassica oleracea var.capitata seedlings[J].,2015,(01):638.[doi:10.3969/j.issn.1000-4440.2015.03.028]
[2]李建斌,李兆虎,王红,等.耐低温弱光结球甘蓝种质资源评价[J].江苏农业学报,2015,(03):645.[doi:10.3969/j.issn.1000-4440.2015.03.029]
 LI Jian-bin,LI Zhao-hu,WANG Hong,et al.Evaluation of cabbage germplasm tolerant to low temperature and weak light[J].,2015,(01):645.[doi:10.3969/j.issn.1000-4440.2015.03.029]

备注/Memo

备注/Memo:
收稿日期:2023-02-06基金项目:南京市科技计划项目(202109021);江苏省重点研发计划项目(BE2021376);江苏省种业振兴揭榜挂帅项目[JBGS(2021)067];国家自然科学基金项目(31902009);国家现代农业产业技术体系建设专项(CARS-23-G42)作者简介:张伟(1989-),男,安徽安庆人,博士,副研究员,研究方向为甘蓝遗传育种与分子生物学。(E-mail)zhangwei@jaas.ac.cn通讯作者:王神云,(E-mail)wangshenyun@jaas.ac.cn
更新日期/Last Update: 2024-03-17