[1]孟科,赵薇,郭晨浩,等.不同品种绵羊肌内脂肪沉积相关miRNA的筛选与功能预测[J].江苏农业学报,2023,(07):1554-1566.[doi:doi:10.3969/j.issn.1000-4440.2023.07.012]
 MENG Ke,ZHAO Wei,GUO Chen-hao,et al.Screening and functional prediction of miRNA related to intramuscular fat deposition in different sheep breeds[J].,2023,(07):1554-1566.[doi:doi:10.3969/j.issn.1000-4440.2023.07.012]
点击复制

不同品种绵羊肌内脂肪沉积相关miRNA的筛选与功能预测()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年07期
页码:
1554-1566
栏目:
畜牧兽医·水产养殖
出版日期:
2023-10-31

文章信息/Info

Title:
Screening and functional prediction of miRNA related to intramuscular fat deposition in different sheep breeds
作者:
孟科12赵薇1郭晨浩1聂伟1陶毛孩1袁晓春1孙昊然1冯登侦1
(1.宁夏大学农学院,宁夏银川750021;2.宁夏中卫市沙坡头区畜牧水产技术推广服务中心,宁夏中卫755000)
Author(s):
MENG Ke12ZHAO Wei1GUO Chen-hao1NIE Wei1TAO Mao-hai1YUAN Xiao-chun1SUN Hao-ran1FENG Deng-zhen1
(1.School of Agriculture, Ningxia University, Yinchuan 750021, China;2.Animal Husbandry and Fishery Technology Extension and Service Center, Shapotou District, Zhongwei City, Zhongwei 755000, China)
关键词:
绵羊肌内脂肪沉积转录组miRNA
Keywords:
sheepintramuscular fat depositiontranscriptomemiRNA
分类号:
S826
DOI:
doi:10.3969/j.issn.1000-4440.2023.07.012
文献标志码:
A
摘要:
为明确不同品种绵羊(Ovis aries)肌肉组织miRNA的表达情况,筛选影响绵羊肌内脂肪沉积的关键miRNA,以滩羊、杜泊羊和小尾寒羊为研究对象,测定背最长肌肌内脂肪含量并对其进行转录组测序(RNA-Seq),筛选绵羊脂肪沉积相关的差异表达miRNA。结果表明,滩羊肌内脂肪含量显著高于杜泊羊,极显著高于小尾寒羊;杜泊羊肌内脂肪含量显著高于小尾寒羊。转录组测序质量良好。3个品种绵羊共鉴定到134个已知miRNA和153个预测miRNA,这些 miRNA的长度主要介于21~23 nt,且首位碱基对U碱基具有明显偏好性。以P ≤0.05和|log2FC|>1(FC为差异倍数)为筛选条件,3个比较组共获得42个差异表达miRNA;杜泊羊与滩羊比较组中筛选出22个差异表达miRNA;小尾寒羊与杜泊羊比较组中筛选出21个差异表达 miRNA;小尾寒羊与滩羊比较组中筛选出12个差异表达miRNA。筛选出的42个miRNA靶向到326个靶基因,显著富集到减数分裂I、肌肽-寡糖1,2-α-甘露糖苷酶活性和甘露寡糖甘露糖苷酶活性等303个基因本体(GO)条目,以及富集到α-亚麻酸代谢、亚油酸代谢、多巴胺能突触、胰岛素信号传导途径及N-聚糖生物合成等320个京都基因与基因组百科全书(KEGG)代谢通路。根据GO和KEGG的功能描述进一步筛选出23个miRNA及其靶向的119个靶基因可能参与脂肪沉积。进一步构建miRNA靶向调控网络,最终筛选到oar-miR-133、oar-miR-485-5p、novel_6、novel_85和novel_103等绵羊肌内脂肪沉积的关键miRNA。随机选择的8个差异表达miRNA的实时荧光定量PCR结果与转录组测序结果一致,表明转录组测序结果可靠。本研究为深入开展绵羊肌内脂肪沉积的分子调控机理、高品质绵羊品种的选育提供理论依据。
Abstract:
In order to clarify the expression of miRNAs in muscle tissues of different breeds of sheep (Ovis aries) and screen the key miRNAs affecting intramuscular fat deposition in sheep, Tan sheep, Dorper sheep and Small Tail Han sheep were used as experimental materials. The intramuscular fat content of longissimus dorsi muscle was measured and transcriptome sequencing (RNA-Seq) was performed to screen the differentially expressed miRNAs related to fat deposition in sheep. The results showed that the intramuscular fat content of Tan sheep was significantly higher than that of Dorper sheep, and extremely significantly higher than that of Small Tail Han sheep, and the intramuscular fat content of Dorper sheep was significantly higher than that of Small Tail Han sheep. The quality of transcriptome sequencing was good. A total of 134 known miRNAs and 153 predicted miRNAs were identified in three breeds of sheep. The length of these miRNAs mainly ranged from 21 nt to 23 nt, and the first base had obvious preference for U base. With P≤0.05 and |log2FC|>1 (FC was the fold change)as the screening conditions, a total of 42 differentially expressed miRNAs were obtained from the three comparison groups. Twenty-two differentially expressed miRNAs were screened in the comparison group of Dorper sheep and Tan sheep, 21 differentially expressed miRNAs were screened in the comparison group of Small Tail Han sheep and Dorper sheep, and 12 differentially expressed miRNAs were screened in the comparison group of Small Tail Han sheep and Tan sheep. The screened 42 miRNAs targeted to 326 target genes, which were significantly enriched into 303 gene ontology(GO) entries such as meiosis I, mannosyl-oligosaccharide 1,2-α-mannosidase activity and mannosyl-oligosaccharide mannosidase activity, and 320 Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways such as α-linolenic acid metabolism, linoleic acid metabolism, dopaminergic synapses, insulin signaling pathway and N-glycan biosynthesis. According to the functional description of GO and KEGG, 23 miRNAs and 119 target genes might be involved in fat deposition. The miRNA targeted regulatory network was further constructed, and finally the key miRNAs for fat deposition in sheep such as oar-miR-133, oar-miR-485-5p, novel_6, novel_85 and novel_103 were screened. The qRT-PCR results of the eight randomly selected differentially expressed miRNAs were consistent with transcriptome sequencing results, indicating that the transcriptome sequencing results were reliable. This study provides a theoretical basis for further research on the molecular regulation mechanism of intramuscular fat deposition in sheep and the breeding of high-quality sheep breeds.

参考文献/References:

[1]FRANK D, WATKINS P, BALL A, et al. Impact of brassica and lucerne finishing feeds and intramuscular fat on lamb eating quality and flavor. a cross-cultural study using Chinese and non-Chinese Australian consumers [J]. J Agric Food Chem,2016, 64(36): 6856-6868.
[2]闫伟,王玉涛,张永浩,等. 绵羊肌内前体脂肪细胞CNR1和FABP4基因表达研究[J]. 中国农业科技导报, 2022, 24(3): 95-102.
[3]LIANG C, QIAO L, HAN Y, et al. Regulatory roles of SREBF1 and SREBF2 in lipid metabolism and deposition in two Chinese representative fat-tailed sheep breeds[J]. Animals, 2020, 10(8): 1317.
[4]MOHSEN A, HOSEIN M S, MOHAMMAD M S, et al. Association of the calpastatin genotypes, haplotypes, and SNPs with meat quality and fatty acid composition in two Iranian fat- and thin-tailed sheep breeds[J]. Small Ruminant Research,2016, 149: 40-51.
[5]HORAK M, NOVAK J, BIENERTOVA-VASKU J. Muscle-specific microRNAs in skeletal muscle development[J]. Dev Biol, 2016, 410(1): 1-13.
[6]邵静,张珈溯,尹宝珍,等. miR-17-3p靶向KCTD15调控延边黄牛前体脂肪细胞分化[J].畜牧兽医学报, 2020, 51(11): 2689-2698.
[7]MA J Q, LIN Y Q, ZHU J J, et al. MiR-26b-5p regulates the preadipocyte differentiation by targeting FGF21 in goats[J]. In Vitro Cellular & Developmental Biology-Animal, 2021,57: 257-263.
[8]CHEN X Y, SAYED H A R, CHENG G, et al. Bta-miR-376a targeting KLF15 interferes with adipogenesis signaling pathway to promote differentiation of Qinchuan beef cattle preadipocytes[J]. Animals, 2020, 10(12): 2362.
[9]DENG K, REN C, FAN Y, et al. miR-27a is an important adipogenesis regulator associated with differential lipid accumulation between intramuscular and subcutaneous adipose tissues of sheep[J]. Domest Anim Endocrinol,2020,71: 106393.
[10]CHENG F, LIANG J, YANG L, et al. Systematic identification and comparison of the expressed profiles of lncRNAs, miRNAs, circRNAs, and mRNAs with associated co-expression networks in pigs with low and high intramuscular fat[J]. Animals, 2021,11(11):3212.
[11]喻世刚,王钢,廖娟,等. 沐川乌骨黑鸡肌内脂肪沉积相关microRNAs的筛查与鉴定[J].中国畜牧兽医, 2021, 48(8): 2713-2726.
[12]HUANG J P, WANG S Z, FENG X, et al. miRNA transcriptome comparison between muscle and adipose tissues indicates potential miRNAs associated with intramuscular fat in Chinese swamp buffalo[J]. Genome, 2019, 62(11): 729-738.
[13]BARTEL D P. Metazoan MicroRNAs[J]. Cell,2018, 173(1): 20-51.
[14]孟科,张天闻,梁鹏,等. 绵羊MYF5基因多态性及其与生长性状的关联分析[J]. 农业生物技术学报, 2022, 30(3): 496-505.
[15]BUSHATI N, COHEN S M. microRNA functions[J]. Annu Rev Cell Dev Biol, 2007, 23: 175-205.
[16]LIU Z J, LI C Y, LI X Y, et al. Expression profiles of microRNAs in skeletal muscle of sheep by deep sequencing[J]. Asian-Australasian Journal of Animal Sciences, 2019, 32(6): 757-766.
[17]付雪峰,赵冰茹,索朗达,等. 不同绒细度的西藏绒山羊皮肤组织miRNA分析与鉴定[J].农业生物技术学报,2021, 29(11): 2118-2128.
[18]袁钰洁,周婧雯,殷实,等.不同发育阶段牦牛睾丸组织miRNA的分析及鉴定[J].中国兽医学报,2022,42(1):165-174.
[19]闫晓茹,师涛,潘洋洋,等. MiR-433-3p靶向调节绵羊BCKDHB表达[J].中国农业科学, 2017, 50(22): 4389-4397.
[20]ZHANG L, WU Z Q, WANG Y J, et al. MiR-143 regulates milk fat synthesis by targeting smad3 in bovine mammary epithelial cells[J]. Animals, 2020, 10(9): 1453.
[21]WANG H Y, ZHENG Y, WANG G L, et al. Identification of microRNA and bioinformatics target gene analysis in beef cattle intramuscular fat and subcutaneous fat[J]. Molecular Biosystems,2013, 9(8): 2154-2162.
[22]汪海洋,郑月,李惠侠,等. 西门塔尔牛肌内和皮下脂肪miRNA表达谱及miR-27b靶基因分析[J]. 中国农业科学,2013, 46(18): 3894-3900.
[23]FANG L, SHEN B, IRWIN D M, et al. Parallel evolution of the glycogen synthase 1 (muscle) gene Gys1 between old world and new world fruit bats (order: chiroptera)[J]. Biochem Genet, 2014, 52: 443-458.
[24]LAI P H, WANG W L, KO C Y, et al. HDAC1/HDAC3 modulates PPARG2 transcription through the sumoylated CEBPD in hepatic lipogenesis[J]. Biochimica et Biophysica Acta,2008, 1783(10): 1803-1814.
[25]王晶.延黄牛GSTP1基因遗传变异分析及其对脂代谢的影响[D].延吉:延边大学,2021.
[26]马彦茹,于永生,曹阳,等. 中国草原红牛PDK4基因多态性及其与肉质性状的关联分析[J]. 中国畜牧兽医, 2022, 49(6): 2186-2194.
[27]LIN W, ZHAO J, YAN M, et al. SESN3 inhibited SMAD3 to relieve its suppression for MiR-124, thus regulating pre-adipocyte adipogenesis[J]. Genes,2021,12(12):1852.
[28]YAMG G, BU D P, WAMG J Q, et al. Duodenal infusion of α-linolenic acid affects fatty acid metabolism in the mammary gland of lactating dairy cows[J]. Journal of Dairy Science,2012,95(10):5821-5830.
[29]伏春燕,张燕,魏祥法,等. 共轭亚油酸降低脂肪沉积的分子机制研究进展[J]. 动物营养学报,2019,31(8): 3456-3462.
[30]陈林,赵伟杰,张枫琳,等. 不同共轭亚油酸异构体对小鼠脂肪沉积、能量代谢和肠道微生物的影响[J]. 华南农业大学学报, 2022, 43(3): 1-8.

相似文献/References:

[1]吴阳升,林嘉鹏,汪立芹,等.绵羊小卵泡与中卵泡转录组差异特征分析[J].江苏农业学报,2016,(04):832.[doi:10.3969/j.issn.100-4440.2016.04.019]
 WU Yang-sheng,LIN Jia-peng,WANG Li-qin,et al.Transcriptome profiling of ovine follicles during growth from small to middle antral sizes[J].,2016,(07):832.[doi:10.3969/j.issn.100-4440.2016.04.019]
[2]闫乐艳,GEORGE Mann,施振旦.利用Onapristone研究绵羊子宫内膜组织中孕酮对PGF2α分泌以及COX-2表达的影响[J].江苏农业学报,2017,(03):624.[doi:doi:10.3969/j.issn.1000-4440.2017.03.020]
 YAN Le-yan,GEORGE Mann,SHI Zhen-dan.Regulation of progesterone in PGF2α secretion and COX-2 expression by onapristone in ovine endometrial cells[J].,2017,(07):624.[doi:doi:10.3969/j.issn.1000-4440.2017.03.020]
[3]吴阳升,林嘉鹏,蒋香菊,等.绵羊FSHR基因可变剪接体的克隆、鉴定及表达分析[J].江苏农业学报,2017,(03):630.[doi:doi:10.3969/j.issn.1000-4440.2017.03.021]
 WU Yang-sheng,LIN Jia-peng,JIANG Xiang-ju,et al.Cloning, identification, and expression analysis of alternative splicing isoforms of FSHR in sheep[J].,2017,(07):630.[doi:doi:10.3969/j.issn.1000-4440.2017.03.021]
[4]卢春霞,刘长彬,万鹏程,等.绵羊ovPAG7间接竞争酶联适配体检测方法的建立与应用[J].江苏农业学报,2022,38(03):730.[doi:doi:10.3969/j.issn.1000-4440.2022.03.019]
 LU Chun-xia,LIU Chang-bin,WAN Peng-cheng,et al.Establishment and application of indirect competitive enzyme-linked aptamer assay for ovPAG7 in sheeps[J].,2022,38(07):730.[doi:doi:10.3969/j.issn.1000-4440.2022.03.019]
[5]李述方,王海荣.热应激对绵羊机体氧化损伤及免疫功能的影响[J].江苏农业学报,2023,(07):1606.[doi:doi:10.3969/j.issn.1000-4440.2023.07.017]
 LI Shu-fang,WANG Hai-rong.Effects of heat stress on oxidative damage and immune function in sheep[J].,2023,(07):1606.[doi:doi:10.3969/j.issn.1000-4440.2023.07.017]
[6]罗志斌,欧慧敏,李建中,等.体外发酵法评估呼伦贝尔羊瘤胃对过瘤胃蛋氨酸的生物利用率及过瘤胃蛋氨酸对瘤胃微生物的影响[J].江苏农业学报,2024,(05):874.[doi:doi:10.3969/j.issn.1000-4440.2024.05.012]
 LUO Zhibin,OU Huimin,LI Jianzhong,et al.Evaluation for bioavailability of rumen protected methionine and its effects on rumen microorganisms in Hulun Buir sheep by in vitro fermentation[J].,2024,(07):874.[doi:doi:10.3969/j.issn.1000-4440.2024.05.012]
[7]张欣如,古丽米热·阿不都热依木,陈莹,等.绵羊基质Gla蛋白基因克隆、表达谱及其在卵巢组织的定位[J].江苏农业学报,2024,(07):1276.[doi:doi:10.3969/j.issn.1000-4440.2024.07.014]
 ZHANG Xinru,Gulimire·Abudureyimu,CHEN Ying,et al.Cloning, expression profile and ovarian localization of sheep matrix Gla protein gene[J].,2024,(07):1276.[doi:doi:10.3969/j.issn.1000-4440.2024.07.014]

备注/Memo

备注/Memo:
收稿日期:2022-07-01基金项目:宁夏回族自治区自然科学基金项目(2020AAC03082); 宁夏回族自治区农业育种专项 (NXNYYZ20150101)作者简介:孟科(1996-),男,宁夏中卫人,硕士研究生,主要从事动物遗传育种与分子育种研究。(E-mail)1131988962@qq.com通讯作者:冯登侦,(E-mail)fdzh126@sohu.com
更新日期/Last Update: 2023-11-17