参考文献/References:
[1]CHEN J, YU X M, ZHENG Q S, et al. The immunopotentiator CVC1302 enhances immune efficacy and protective ability of foot-and-mouth disease virus vaccine in pigs[J].Vaccine, 2018, 36(52): 7929-7935.
[2]LEVITZ S, GOLENBOCK D. Beyond empiricism: informing vaccine development through innate immunity research[J]. Cell, 2012, 148(6): 1284-1292.
[3]DOWLING J K, MANSELL A. Toll-like receptors: the Swiss army knife of immunity and vaccine development[J]. Clinical & Translational Immunology, 2016, 5: e85.
[4]DU L P, YU X M, HOU L T, et al. Identifification of mechanisms conferring an enhanced immune response in mice induced by CVC1302-adjuvanted killed serotype O foot-and-mouth virus vaccine[J]. Vaccine, 2019, 37(43): 6362-6370.
[5]FENG J, PUCELLA J N, JANG G. Clonal lineage tracing reveals shared origin of conventional and plasmacytoid dendritic cells[J]. Immunity, 2022, 55: 405-422.
[6]SESTI-COSTA R, MORAES V, CERVANTES B L. Dendritic cells: immune response in infectious diseases and autoimmunity[J]. Mediators of Inflammation, 2020. DOI: 10.1155/2020/2948525.
[7]LEN B T. Cells in allergic asthma: key players beyond the Th2 pathway[J]. Current Allergy and Asthma Reports, 2017, 17(7):1-10.
[8]HELFT J, BOTTCHER, CHAKRAVARTY P, et al. GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c+MHCII+ macrophages and dendritic cells[J]. Immunity, 2015, 42(6):1197-1211.
[9]MAYER C T, GHORBANI P, NANDAN A, et al. Selective and efficient generation of functional Batf3-dependent CD103+ dendritic cells from mouse bone marrow[J]. Blood, 2014, 124(20): 3081-3091.
[10]CHATZILEONTIADOU D, SLOANE H, NGUYEN A T, et al. The many faces of CD4+ T cells: immunological and structural characteristics[J]. International Journal of Molecular Sciences, 2021, 22(1):73.DOI:10.3390/ijms22010073.
[11]PUHR S, LEE J, ZVEZDOVA E, et al. Dendritic cell development-history, advances, and open questions[J]. Seminars in Immunology, 2015, 27:388-396.
[12]GALATI D, ZANOTTA S. Empowering dendritic cell cancer vaccination: the role of combinatorial strategies[J]. Cytotherapy, 2018, 20: 1309-1323.
[13]谭剑峰,李东方,郭权威,等. 小鼠骨髓浆细胞样与髓样树突状细胞的体外培养及对比研究[J]. 河北医学, 2021, 27(10):1626-1631.
[14]COLLIN M, BIGLEY V. Human dendritic cell subsets: an update[J]. Immunology, 2018,154:3-20.DOI: 10.1111/imm.12888.
[15]EL-SAYES N, VITO A, SALEM O. A combination of chemotherapy and oncolytic virotherapy sensitizes colorectal adenocarcinoma to immune checkpoint inhibitors in a cDC1-dependent manner[J]. International Journal of Molecular Sciences, 2022, 23(3):1-11. DOI:10.3390/ijms23031754.
[16]HE Y Q, QIAO Y L, XU S. Allergen induces CD11c+ dendritic cell autophagy to aggravate allergic rhinitis through promoting immune imbalance[J]. International Immunopharmacology, 2022, 106: 108611.
[17]韦莉,陈光璋,孙潮,等. 沙门菌外膜囊泡对小鼠髓源树突状细胞的免疫调控作用[J]. 四川大学学报(医学版), 2021, 52(6): 948-953.
[18]DU L P, CHEN J, HOU L T, et al. Long-term humoral immunity induced by CVC1302-adjuvanted serotype O foot-and-mouth disease inactivated vaccine correlates with promoted T follicular helper cells and thus germinal center responses in mice[J].Vaccine, 2017, 35(51): 7088-7094.
[19]DU L P, HOU L T, YU X M, et al. Pattern-recognition receptor agonist-containing immunopotentiator CVC1302 boosts high-affinity long-lasting humoral immunity[J]. Frontiers in Immunology, 2021, 12:4520-4530. DOI: 10.3389/fimmu.2021.697292.
[20]NUTT S L, CHOPIN M. Transcriptional networks driving dendritic cell differentiation and function[J]. Immunity, 2020, 52(6): 942-956.
[21]SIM W J, MALINARICH F, FAIRHURST A M, et al. Generation of immature, mature and tolerogenic dendritic cells with differing metabolic phenotypes[J]. Journal of Visualized Experiments, 2016(112):1-17. DOI:10.3791/54128.