[1]侯立婷,于晓明,杜露平,等.CVC1302通过小鼠骨髓源树突状细胞对免疫反应的调控[J].江苏农业学报,2023,(06):1380-1385.[doi:doi:10.3969/j.issn.1000-4440.2023.06.014]
 HOU Li-ting,YU Xiao-ming,DU Lu-ping,et al.Regulation of immune response by CVC1302 through mouse bone marrow-derived dendritic cells[J].,2023,(06):1380-1385.[doi:doi:10.3969/j.issn.1000-4440.2023.06.014]
点击复制

CVC1302通过小鼠骨髓源树突状细胞对免疫反应的调控()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年06期
页码:
1380-1385
栏目:
畜牧兽医·水产养殖
出版日期:
2023-09-30

文章信息/Info

Title:
Regulation of immune response by CVC1302 through mouse bone marrow-derived dendritic cells
作者:
侯立婷1234于晓明1234杜露平1234张元鹏1234程海卫1234陈瑾1234郑其升1234侯继波1234
(1.江苏省农业科学院动物免疫工程研究所,江苏南京210014;2.江苏省农业科学院国家兽用生物制品工程技术研究中心,江苏南京210014;3.兽用生物制品<泰州>国泰技术创新中心,江苏泰州225300;4.省部共建国家重点实验室培育基地——江苏省食品质量安全重点实验室,江苏南京210014)
Author(s):
HOU Li-ting1234YU Xiao-ming1234DU Lu-ping1234ZHANG Yuan-peng1234CHENG Hai-wei1234CHEN Jin1234ZHENG Qi-sheng1234HOU Ji-bo1234
(1.Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.National Research Center of Veterinary Biological Engineering and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;3.GuoTai Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China;4.State Key Laboratory Breeding Base-Jiangsu Provincial Key Laboratory for Food Quality and Safety, Nanjing 210014, China)
关键词:
C57BL/6小鼠树突状细胞CVC1302抗原递呈T淋巴细胞活化
Keywords:
C57BL/6 micedendritic cellsCVC1302antigen presentationT lymphocyte cell activation
分类号:
S852.4
DOI:
doi:10.3969/j.issn.1000-4440.2023.06.014
文献标志码:
A
摘要:
为获得C57BL/6小鼠骨髓源树突状细胞(DC)的体外制备方法并探讨免疫增强剂CVC1302对DC免疫调控的影响,取8周龄的C57BL/6小鼠骨髓细胞,在体外经过重组鼠源粒细胞/巨噬细胞集落刺激因子(Recombinant mouse granulocyte-macrophage colony-stimulating factor, rm GM-CSF)诱导分化为DC。诱导当天与诱导第3 d、第7 d时,用倒置显微镜观察细胞形态;诱导第7 d时,收获细胞,鉴定表型。利用流式细胞术评价CVC1302对DC表面分子表达水平的影响,用超高分辨率显微镜评价CVC1302对DC递呈抗原的影响,采用流式细胞术检测T淋巴细胞的活化数量,利用酶联免疫吸附试验(Enzyme linked immunosorbent assay,ELISA)方法检测T淋巴细胞活化后干扰素γ(IFN-γ)的分泌水平。结果表明,体外诱导的DC在显微镜下具有非常典型的树突状细胞形态,流式细胞术检测结果表明,经典的1型树突状细胞(Conventional type 1 dendritic cell,cDC1)和经典的2型树突状细胞(Conventional type 2 dendritic cell,cDC2)亚群均可检测到。CVC1302能够显著促进DC表面分子活化并且增强DC对鸡卵清白蛋白(OVA)抗原的递呈;CVC1302能够显著活化T淋巴细胞并且提高T淋巴细胞活化后IFN-γ的分泌水平。本研究利用rm GM-CSF成功在体外刺激诱导DC的产生,并证实了CVC1302在体外同样具有促进DC成熟、DC对OVA抗原的递呈及T淋巴细胞活化的能力。
Abstract:
To establish an effective method for acquiring bone marrow-derived dendritic cells (DC) from C57BL/6 mice in vitro and explore the immune modulation of immunopotentiator CVC1302 on DC, the bone marrow cells were isolated from C57BL/6 mice of eight week-age and were induced by recombinant mouse granulocyte-macrophage colony-stimulating factor (rm GM-CSF) in vitro to differentiate into DC. The cell morphology was observed by inverted microscope on the induction day and day 3, day 7 of induction, and cells were collected and the phenotype was identified on day 7 of induction. The expression level of DC surface molecules and antigen presentation of DC affected by CVC1302 were evaluated by flow cytometry and ultra-high resolution microscopy respectively. The numbers of activated T lymphocyte cells and secretion level of interferon-γ (IFN-γ) after activation of T lymphocyte cells were detected by flow cytometry and enzyme linked immunosorbent assay(ELISA) respectively. The results showed that the DC induced in vitro had very typical dendritic cell morphology. Moreover, subpopulations of conventional type 1 dendritic cell (cDC1) and conventional type 2 dendritic cell (cDC2) could both be detected by flow cytometry. CVC1302 could significantly promote the activation of DC surface molecules and enhance the presentation ability of DC to ovalbumin (OVA) antigen, and CVC1302 could activate T lymphocyte cells significantly and increase the secretion level of IFN-γ after activation of T lymphocyte cells. The rm GM-CSF could successfully stimulate DC production in vitro, and CVC1302 also had the ability to promote DC maturation, OVA antigen presentation by DC and activation of T lymphocyte cells in vitro.

参考文献/References:

[1]CHEN J, YU X M, ZHENG Q S, et al. The immunopotentiator CVC1302 enhances immune efficacy and protective ability of foot-and-mouth disease virus vaccine in pigs[J].Vaccine, 2018, 36(52): 7929-7935.
[2]LEVITZ S, GOLENBOCK D. Beyond empiricism: informing vaccine development through innate immunity research[J]. Cell, 2012, 148(6): 1284-1292.
[3]DOWLING J K, MANSELL A. Toll-like receptors: the Swiss army knife of immunity and vaccine development[J]. Clinical & Translational Immunology, 2016, 5: e85.
[4]DU L P, YU X M, HOU L T, et al. Identifification of mechanisms conferring an enhanced immune response in mice induced by CVC1302-adjuvanted killed serotype O foot-and-mouth virus vaccine[J]. Vaccine, 2019, 37(43): 6362-6370.
[5]FENG J, PUCELLA J N, JANG G. Clonal lineage tracing reveals shared origin of conventional and plasmacytoid dendritic cells[J]. Immunity, 2022, 55: 405-422.
[6]SESTI-COSTA R, MORAES V, CERVANTES B L. Dendritic cells: immune response in infectious diseases and autoimmunity[J]. Mediators of Inflammation, 2020. DOI: 10.1155/2020/2948525.
[7]LEN B T. Cells in allergic asthma: key players beyond the Th2 pathway[J]. Current Allergy and Asthma Reports, 2017, 17(7):1-10.
[8]HELFT J, BOTTCHER, CHAKRAVARTY P, et al. GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c+MHCII+ macrophages and dendritic cells[J]. Immunity, 2015, 42(6):1197-1211.
[9]MAYER C T, GHORBANI P, NANDAN A, et al. Selective and efficient generation of functional Batf3-dependent CD103+ dendritic cells from mouse bone marrow[J]. Blood, 2014, 124(20): 3081-3091.
[10]CHATZILEONTIADOU D, SLOANE H, NGUYEN A T, et al. The many faces of CD4+ T cells: immunological and structural characteristics[J]. International Journal of Molecular Sciences, 2021, 22(1):73.DOI:10.3390/ijms22010073.
[11]PUHR S, LEE J, ZVEZDOVA E, et al. Dendritic cell development-history, advances, and open questions[J]. Seminars in Immunology, 2015, 27:388-396.
[12]GALATI D, ZANOTTA S. Empowering dendritic cell cancer vaccination: the role of combinatorial strategies[J]. Cytotherapy, 2018, 20: 1309-1323.
[13]谭剑峰,李东方,郭权威,等. 小鼠骨髓浆细胞样与髓样树突状细胞的体外培养及对比研究[J]. 河北医学, 2021, 27(10):1626-1631.
[14]COLLIN M, BIGLEY V. Human dendritic cell subsets: an update[J]. Immunology, 2018,154:3-20.DOI: 10.1111/imm.12888.
[15]EL-SAYES N, VITO A, SALEM O. A combination of chemotherapy and oncolytic virotherapy sensitizes colorectal adenocarcinoma to immune checkpoint inhibitors in a cDC1-dependent manner[J]. International Journal of Molecular Sciences, 2022, 23(3):1-11. DOI:10.3390/ijms23031754.
[16]HE Y Q, QIAO Y L, XU S. Allergen induces CD11c+ dendritic cell autophagy to aggravate allergic rhinitis through promoting immune imbalance[J]. International Immunopharmacology, 2022, 106: 108611.
[17]韦莉,陈光璋,孙潮,等. 沙门菌外膜囊泡对小鼠髓源树突状细胞的免疫调控作用[J]. 四川大学学报(医学版), 2021, 52(6): 948-953.
[18]DU L P, CHEN J, HOU L T, et al. Long-term humoral immunity induced by CVC1302-adjuvanted serotype O foot-and-mouth disease inactivated vaccine correlates with promoted T follicular helper cells and thus germinal center responses in mice[J].Vaccine, 2017, 35(51): 7088-7094.
[19]DU L P, HOU L T, YU X M, et al. Pattern-recognition receptor agonist-containing immunopotentiator CVC1302 boosts high-affinity long-lasting humoral immunity[J]. Frontiers in Immunology, 2021, 12:4520-4530. DOI: 10.3389/fimmu.2021.697292.
[20]NUTT S L, CHOPIN M. Transcriptional networks driving dendritic cell differentiation and function[J]. Immunity, 2020, 52(6): 942-956.
[21]SIM W J, MALINARICH F, FAIRHURST A M, et al. Generation of immature, mature and tolerogenic dendritic cells with differing metabolic phenotypes[J]. Journal of Visualized Experiments, 2016(112):1-17. DOI:10.3791/54128.

备注/Memo

备注/Memo:
收稿日期:2022-10-28基金项目:江苏省农业科技自主创新专项[CX(21)3135];国家自然科学基金项目(32102690)作者简介:侯立婷(1990-),女,山东德州人,硕士,主要从事动物免疫增强技术研究。(E-mail)houxyzmn@163.com通讯作者:陈瑾,(E-mail)chenjin_abc@163.com;郑其升,(E-mail)njcvc1302@163.com
更新日期/Last Update: 2023-11-17