[1]乔志伟,刘超,王红.一株硝基还原假单胞菌的溶磷特性及对碳循环相关基因的影响[J].江苏农业学报,2023,(05):1151-1158.[doi:doi:10.3969/j.issn.1000-4440.2023.05.007]
 QIAO Zhi-wei,LIU Chao,WANG Hong.Phosphorus solubilizing characteristics of a Pseudomonas nitroreducens strain and its effect on carbon cycling related genes[J].,2023,(05):1151-1158.[doi:doi:10.3969/j.issn.1000-4440.2023.05.007]
点击复制

一株硝基还原假单胞菌的溶磷特性及对碳循环相关基因的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年05期
页码:
1151-1158
栏目:
耕作栽培·资源环境
出版日期:
2023-08-31

文章信息/Info

Title:
Phosphorus solubilizing characteristics of a Pseudomonas nitroreducens strain and its effect on carbon cycling related genes
作者:
乔志伟123刘超2王红2
(1.安顺学院农学院,贵州安顺561000;2.安顺学院资源与环境工程学院,贵州安顺561000;3.贵州省高校乡村振兴研究中心,贵州安顺561000)
Author(s):
QIAO Zhi-wei123LIU Chao2WANG Hong2
(1.College of Agriculture, Anshun University, Anshun 561000, China;2.College of Resources and Environmental Engineering, Anshun University, Anshun 561000, China;3.Rural Revitalization Research Center of Guizhou Universities, Anshun 561000, China)
关键词:
硝基还原假单胞菌溶磷特性不同碳源碳循环基因
Keywords:
Pseudomonas nitroreducens strainphosphorus solubilitydifferent carbon sourcescarbon cycle gene
分类号:
S154.3
DOI:
doi:10.3969/j.issn.1000-4440.2023.05.007
文献标志码:
A
摘要:
为提高黔中黄壤区农田土壤磷素的有效性,以从该地区筛选的1株具有溶磷能力的硝基还原假单胞菌(QHR-9)为试验菌株,通过室内摇瓶培养试验研究菌株的溶磷特性。设置对照、QHR-9、QHR-9+葡萄糖、QHR-9+组合糖类等4个处理,通过室外土壤培养试验研究菌株在土壤中的作用及对碳循环相关基因的影响。室内摇瓶培养试验结果表明,培养第7 d,QHR-9对磷酸三钙、磷酸铝、磷矿粉的溶解能力分别为645.82 mg/L、269.17 mg/L、272.45 mg/L; QHR-9在10种不同碳源条件下溶磷能力为28.06~645.82 mg/L,在10种组合碳源条件下的溶磷能力为92.31 mg/L。室外土壤培养试验结果表明,QHR-9可以显著增加土壤有效磷含量、酸性磷酸酶和碱性磷酸酶活性、硝基还原假单胞菌丰度等,QHR-9+葡萄糖与QHR-9+组合糖类处理上述4项指标均高于QHR-9处理;土壤pH以QHR-9+葡萄糖处理最低,与QHR-9、QHR-9+组合糖类处理差异不显著;QHR-9处理微生物碳循环糖基转移酶(GT)和辅助活性酶(AA)基因相对丰度与对照相比降低,糖苷水解酶(GH)基因相对丰度增加,QHR-9+葡萄糖和QHR-9+组合糖类处理加剧了这一变化趋势。相关性分析结果表明,土壤有效磷含量、pH、酸性(碱性)磷酸酶活性与微生物碳循环相关基因相对丰度均有显著或极显著相关性。
Abstract:
To improve soil phosphorus availability in yellow soil area farmland of central Guizhou, a Pseudomonas nitroreducens strain (QHR-9) with phosphorus-solubilizing ability was selected from this area as the test strain. The phosphorus solubilization characteristics of the strain were studied by laboratory shaking flask culture test. Outdoor soil culture experiments were conducted to study the effect of the strain in soil and its effect on carbon cycling related genes, based on four treatments which contained CK, QHR-9, QHR-9+glucose and QHR-9+combined carbohydrate. Results of laboratory shaking flask culture test showed that, the dissolution capacity of QHR-9 to tricalcium phosphate, aluminum phosphate and ground phosphorite were 645.82 mg/L, 269.17 mg/L and 272.45 mg/L respectively on the 7th day of culturing. The phosphorus solubilizing capacity of QHR-9 was 28.06-645.82 mg/L under ten carbon sources conditions, the phosphorus solubilizing capacity under the combined ten carbon source condition was 92.31 mg/L. Results of outdoor soil culture experiments showed that, QHR-9 could significantly increase soil available phosphorus content, acid phosphatase activity, alkaline phosphatase activity and relative abundance of Pseudomonas nitroreducens strain, etc. Under QHR-9+glucose treatment and QHR-9+combined carbohydrate treatment, the above four indexes were significantly higher than those under QHR-9 treatment. Under QHR-9+glucose treatment, the pH was the lowest, and there was no significant difference between QHR-9 or QHR-9+ combined carbohydrate treatment. Compared with CK, the relative abundance of glycosyltransferases (GT) and auxiliary actives (AA) genes of microbial carbon cycle under QHR-9 treatment decreased, while the relative abundance of glycoside hydrolases (GH) genes increased, the variation trend was exacerbated by QHR-9+glucose treatment and QHR-9+ combined carbohydrate treatment. Correlation analysis showed that, soil available phosphorus content, pH, acid phosphatase or alkaline phosphatase activity were significantly or extremely significantly correlated with relative abundance of microbial carbon cycling related genes.

参考文献/References:

[1]RINGEVAL B, NOWAK B, NESME T, et al. Contribution of anthropogenic phosphorus to agricultural soil fertility and food production [J]. Global Biogeochemical Cycles, 2014, 28(7): 743-756.
[2]LUO R Y, KUZYAKOV Y K, ZHU B, et al. Phosphorus addition decreases plant lignin but increases microbial necromass contribution to soil organic carbon in a subalpine forest[J]. Global Change Biology, 2022(420): 1-17.
[3]MOHAMMAD S K, ALMAS Z, MLUNEES A, et al. Plant growth promotion by phosphate solubilizing fungi-current perspective[J]. Archives of Agronomy and Soil Science, 2010, 56(1):73-98.
[4]MADHUSMITA P, RANJAN K S, CHINMAY P, et al. Contribution of native phosphorous-solubilizing bacteria of acid soils on phosphorous acquisition in peanut[J]. Protoplasma, 2017, 254(6):2225-2236.
[5]WASEEM H, HINA A, USMAN I, et al. Analysis of ecological attributes of bacterial phosphorus solubilizers, native to pine forests of Lower Himalaya[J]. Applied Soil Ecology, 2017(112):51-59.
[6]刘文干,曹慧, 樊建波,等. 一株红壤花生根际溶磷真菌的分离、鉴定及溶磷能力的研究[J]. 土壤学报, 2012,49(5):988-994.
[7]贺梦醒,高毅,胡正雪,等. 解磷菌株B25的筛选、鉴定及其解磷能力[J]. 应用生态学报, 2012,23(1):235-239.
[8]RUI J P, LI J B, WANG S P, et al. Responses of bacterial communities to simulated climate changes in alpine meadow soil of the Qinghai-Tibet Plateau [J]. Applied and Environmental Microbiology, 2015, 81(17):6070-6077.
[9]FENG J G, ZHU B. A global meta-analysis of soil respiration and its components in response to phosphorus addition[J]. Soil Biology and Biochemistry, 2019(17):38-47.
[10]DU J X, LIU K L, HUANG J, et al. Organic carbon distribution and soil aggregate stability in response to long-term phosphorus addition in different land-use types[J]. Soil and Tillage Research, 2022(215):1-9.
[11]XUE K, YUAN M M, SHI Z J, et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming[J]. Nature Climate Change, 2016, 6(6):595-600.
[12]乔志伟,洪坚平, 谢英荷, 等. 石灰性土壤拉恩氏溶磷细菌的筛选鉴定及溶磷特性[J]. 应用生态学报, 2013,24(8):2294-2300.
[13]TAMURA K, NEI M, KUMAR S. Prospects for inferring very large phylogenies by using the neighbor-joining method[J]. PANS, 2004, 101(30):11030-11035.
[14]沈佳佳,候小改,王二强,等. 油用牡丹根际解有机磷细菌的筛选及解磷功能研究[J]. 生物技术通报, 2022,38(6):157-165.
[15]鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社, 2008.
[16]关松荫. 土壤酶学研究方法[M]. 北京:中国农业出版社, 1986.
[17]PENG J, LU X R, XIE K L,et al . Dynamic alterations in the gut microbiota of collagen-induced arthritis rats following the prolonged administration of total glucosides of paeony[J]. Frontiers in Cellular and Infection Microbiology, 2019(9):1-17.
[18]TENG Z D, CHEN Z P, ZHANG Q, et al. Isolation and characterization of phosphate solubilizing bacteria from rhizosphere soils of the Yeyahu Wetland in Beijing, China[J]. Environmental Science and Pollution Research, 2019(26):33976-33987.
[19]MORA M L, DEMANET R, VISCARDI S, et al. Aluminum-tolerant bacteria improve the plant growth and phosphorus content in ryegrass grown in a volcanic soil amended with cattle dung manure[J]. Applied Soil Ecology, 2017(115):19-26.
[20]李慧萍,甘雅楠,韩庆庆,等. 祁连山云杉林土壤溶磷细菌的分离及对白三叶的促生效应[J]. 草地学报, 2022,30(4):879-888.
[21]朱芙蓉,杜慧慧,周浓,等. 滇重楼根际土壤解无机磷细菌的分离与鉴定[J]. 中国土壤与肥料, 2022(1):155-162.
[22]刘萍,夏江宝. 滨海盐碱地根际溶磷细菌磷素转化特征[J]. 生态学报, 2021,41(11):4531-4540.
[23]吕俊,潘洪祥,于存.马尾松根际溶磷细菌 Paraburkholderia sp.的筛选、鉴定及溶磷特性研究[J]. 生物技术通报, 2020,36(9):147-156.
[24]刘春菊,杜传印,梁子敬,等. 高效解磷细菌菌株CT45-1的鉴定及其对烟草的促生作用[J]. 山东农业科学, 2019,51(4):74-78.
[25]REYES I, BERNIER L, SIMARD R R, et al. Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants[J]. FEMS Microbiology Ecology, 1999(28): 281-290.
[26]WEI Y Q, ZHAO Y, SHI M Z, et al. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation[J]. Bioresour Technol, 2018 (247):190-199.
[27]ANZUAY M S, MGR C, ANGELINI J G. Growth promotion of peanutand maize plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides[J]. Microbiological Research, 2017(199): 98-109.
[28]BARRA P J, PONTIGO S, DELGADO M. Phosphobacteria inoculation enhances the benefit P-fertilization on Lolium perenne in soils contrasting in P-availability[J]. Soil Biology and Biochemistry, 2019(136):1-12.
[29]杨文娜,余泺,罗东海,等. 化肥和有机肥配施生物炭对土壤磷酸酶活性和微生物群落的影响[J]. 环境科学, 2022, 43(1):540-549.
[30]LU J L, JIA P, FENG S W, et al. Remarkable effects of microbial factors on soil phosphorus bioavailability: a country-scale study[J]. Global Change Biology, 2022(422):1-17.
[31]ANGELICA B C, BETSY A R, VERONICA C M G. Phosphate-solubilizing bacteria improve Agave angustifolia Haw. growth under field conditions[J]. Journal of the Food and Agriculture, 2019, 99(14):6601-6607.
[32]张雪梅,张秀梅,李文涛. 鳗草根际溶磷微生物分离、筛选及其对鳗草生长的影响[J]. 中国水产科学, 2020, 27(1):82-95.
[33]YOO G, KANG H. Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment[J]. Journal of Environmental Quality, 2012, 41(4):1193-1202.
[34]MORRISSEY E M, MAU R L, SCHWARTZ E, et al. Bacteria carbon use plasticity, phylogenetic diversity and the priming of soil organic matter[J]. The ISME Journal, 2017(11):1890-1899.
[35]袁银龙,孙杰,徐如玉,等. 丛枝菌根真菌与有机肥配施对甜玉米根际土壤关键碳循环功能基因的影响 [J]. 福建农业学报,2020, 35(7):753-763.
[36]邓玲玲,王如海,吴电明. 增温和互花米草入侵对崇明东滩湿地土壤碳循环功能基因的影响[J]. 南京信息工程大学学报(自然科学版),2022, 14(1) :62-76.
[37]DAI Z M, ZANG H D, CHEN J, et al. Metagenomic insights into soil microbial communities involved in carbon cycling along an eaevation climosequences[J]. Environmental Microbiology, 2021,23(8):4631-4645.

备注/Memo

备注/Memo:
收稿日期:2022-09-29 基金项目:贵州省科技计划项目(黔科合基础20181401);贵州省普通高等学校科技拔尖人才支持计划项目(黔教合KY字2017091);贵州省教育厅青年科技人才成长项目(黔教合KY字2017289) 作者简介:乔志伟(1985-),男,山西大同人,博士,副教授,主要从事土壤溶磷细菌筛选及应用研究。(E-mail)704725646@qq.com
更新日期/Last Update: 2023-09-13