参考文献/References:
[1]RINGEVAL B, NOWAK B, NESME T, et al. Contribution of anthropogenic phosphorus to agricultural soil fertility and food production [J]. Global Biogeochemical Cycles, 2014, 28(7): 743-756.
[2]LUO R Y, KUZYAKOV Y K, ZHU B, et al. Phosphorus addition decreases plant lignin but increases microbial necromass contribution to soil organic carbon in a subalpine forest[J]. Global Change Biology, 2022(420): 1-17.
[3]MOHAMMAD S K, ALMAS Z, MLUNEES A, et al. Plant growth promotion by phosphate solubilizing fungi-current perspective[J]. Archives of Agronomy and Soil Science, 2010, 56(1):73-98.
[4]MADHUSMITA P, RANJAN K S, CHINMAY P, et al. Contribution of native phosphorous-solubilizing bacteria of acid soils on phosphorous acquisition in peanut[J]. Protoplasma, 2017, 254(6):2225-2236.
[5]WASEEM H, HINA A, USMAN I, et al. Analysis of ecological attributes of bacterial phosphorus solubilizers, native to pine forests of Lower Himalaya[J]. Applied Soil Ecology, 2017(112):51-59.
[6]刘文干,曹慧, 樊建波,等. 一株红壤花生根际溶磷真菌的分离、鉴定及溶磷能力的研究[J]. 土壤学报, 2012,49(5):988-994.
[7]贺梦醒,高毅,胡正雪,等. 解磷菌株B25的筛选、鉴定及其解磷能力[J]. 应用生态学报, 2012,23(1):235-239.
[8]RUI J P, LI J B, WANG S P, et al. Responses of bacterial communities to simulated climate changes in alpine meadow soil of the Qinghai-Tibet Plateau [J]. Applied and Environmental Microbiology, 2015, 81(17):6070-6077.
[9]FENG J G, ZHU B. A global meta-analysis of soil respiration and its components in response to phosphorus addition[J]. Soil Biology and Biochemistry, 2019(17):38-47.
[10]DU J X, LIU K L, HUANG J, et al. Organic carbon distribution and soil aggregate stability in response to long-term phosphorus addition in different land-use types[J]. Soil and Tillage Research, 2022(215):1-9.
[11]XUE K, YUAN M M, SHI Z J, et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming[J]. Nature Climate Change, 2016, 6(6):595-600.
[12]乔志伟,洪坚平, 谢英荷, 等. 石灰性土壤拉恩氏溶磷细菌的筛选鉴定及溶磷特性[J]. 应用生态学报, 2013,24(8):2294-2300.
[13]TAMURA K, NEI M, KUMAR S. Prospects for inferring very large phylogenies by using the neighbor-joining method[J]. PANS, 2004, 101(30):11030-11035.
[14]沈佳佳,候小改,王二强,等. 油用牡丹根际解有机磷细菌的筛选及解磷功能研究[J]. 生物技术通报, 2022,38(6):157-165.
[15]鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社, 2008.
[16]关松荫. 土壤酶学研究方法[M]. 北京:中国农业出版社, 1986.
[17]PENG J, LU X R, XIE K L,et al . Dynamic alterations in the gut microbiota of collagen-induced arthritis rats following the prolonged administration of total glucosides of paeony[J]. Frontiers in Cellular and Infection Microbiology, 2019(9):1-17.
[18]TENG Z D, CHEN Z P, ZHANG Q, et al. Isolation and characterization of phosphate solubilizing bacteria from rhizosphere soils of the Yeyahu Wetland in Beijing, China[J]. Environmental Science and Pollution Research, 2019(26):33976-33987.
[19]MORA M L, DEMANET R, VISCARDI S, et al. Aluminum-tolerant bacteria improve the plant growth and phosphorus content in ryegrass grown in a volcanic soil amended with cattle dung manure[J]. Applied Soil Ecology, 2017(115):19-26.
[20]李慧萍,甘雅楠,韩庆庆,等. 祁连山云杉林土壤溶磷细菌的分离及对白三叶的促生效应[J]. 草地学报, 2022,30(4):879-888.
[21]朱芙蓉,杜慧慧,周浓,等. 滇重楼根际土壤解无机磷细菌的分离与鉴定[J]. 中国土壤与肥料, 2022(1):155-162.
[22]刘萍,夏江宝. 滨海盐碱地根际溶磷细菌磷素转化特征[J]. 生态学报, 2021,41(11):4531-4540.
[23]吕俊,潘洪祥,于存.马尾松根际溶磷细菌 Paraburkholderia sp.的筛选、鉴定及溶磷特性研究[J]. 生物技术通报, 2020,36(9):147-156.
[24]刘春菊,杜传印,梁子敬,等. 高效解磷细菌菌株CT45-1的鉴定及其对烟草的促生作用[J]. 山东农业科学, 2019,51(4):74-78.
[25]REYES I, BERNIER L, SIMARD R R, et al. Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants[J]. FEMS Microbiology Ecology, 1999(28): 281-290.
[26]WEI Y Q, ZHAO Y, SHI M Z, et al. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation[J]. Bioresour Technol, 2018 (247):190-199.
[27]ANZUAY M S, MGR C, ANGELINI J G. Growth promotion of peanutand maize plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides[J]. Microbiological Research, 2017(199): 98-109.
[28]BARRA P J, PONTIGO S, DELGADO M. Phosphobacteria inoculation enhances the benefit P-fertilization on Lolium perenne in soils contrasting in P-availability[J]. Soil Biology and Biochemistry, 2019(136):1-12.
[29]杨文娜,余泺,罗东海,等. 化肥和有机肥配施生物炭对土壤磷酸酶活性和微生物群落的影响[J]. 环境科学, 2022, 43(1):540-549.
[30]LU J L, JIA P, FENG S W, et al. Remarkable effects of microbial factors on soil phosphorus bioavailability: a country-scale study[J]. Global Change Biology, 2022(422):1-17.
[31]ANGELICA B C, BETSY A R, VERONICA C M G. Phosphate-solubilizing bacteria improve Agave angustifolia Haw. growth under field conditions[J]. Journal of the Food and Agriculture, 2019, 99(14):6601-6607.
[32]张雪梅,张秀梅,李文涛. 鳗草根际溶磷微生物分离、筛选及其对鳗草生长的影响[J]. 中国水产科学, 2020, 27(1):82-95.
[33]YOO G, KANG H. Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment[J]. Journal of Environmental Quality, 2012, 41(4):1193-1202.
[34]MORRISSEY E M, MAU R L, SCHWARTZ E, et al. Bacteria carbon use plasticity, phylogenetic diversity and the priming of soil organic matter[J]. The ISME Journal, 2017(11):1890-1899.
[35]袁银龙,孙杰,徐如玉,等. 丛枝菌根真菌与有机肥配施对甜玉米根际土壤关键碳循环功能基因的影响 [J]. 福建农业学报,2020, 35(7):753-763.
[36]邓玲玲,王如海,吴电明. 增温和互花米草入侵对崇明东滩湿地土壤碳循环功能基因的影响[J]. 南京信息工程大学学报(自然科学版),2022, 14(1) :62-76.
[37]DAI Z M, ZANG H D, CHEN J, et al. Metagenomic insights into soil microbial communities involved in carbon cycling along an eaevation climosequences[J]. Environmental Microbiology, 2021,23(8):4631-4645.