[1]顾鑫才,陈丙法,刘宏,等.改良生物炭吸附/降解水中有机污染物研究进展[J].江苏农业学报,2023,(03):873-880.[doi:doi:10.3969/j.issn.1000-4440.2023.03.029]
 GU Xin-cai,CHEN Bing-fa,LIU Hong,et al.Research progress on improved biochar adsorption/degradation of organic pollutants in water[J].,2023,(03):873-880.[doi:doi:10.3969/j.issn.1000-4440.2023.03.029]
点击复制

改良生物炭吸附/降解水中有机污染物研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年03期
页码:
873-880
栏目:
综述
出版日期:
2023-06-30

文章信息/Info

Title:
Research progress on improved biochar adsorption/degradation of organic pollutants in water
作者:
顾鑫才1陈丙法2刘宏1韩士群2
(1.苏州科技大学环境科学与工程学院,江苏苏州215009;2.江苏省农业科学院农业资源与环境研究所/农业农村部长江下游平原农业环境重点实验室,江苏南京210014)
Author(s):
GU Xin-cai1CHEN Bing-fa2LIU Hong1HAN Shi-qun2
(1.School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;2.Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment in the Lower Yangtze River Plain, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)
关键词:
生物炭改性方法有机污染物吸附/降解机理
Keywords:
biocharmodification methodorganic pollutantsadsorption/degradation mechanism
分类号:
X522
DOI:
doi:10.3969/j.issn.1000-4440.2023.03.029
文献标志码:
A
摘要:
生物炭是通过生物质原材料制备的富炭产物。生物炭因具有比表面积大、结构多孔和官能团丰富等优点,能够有效吸附水中有机污染物。当生物炭经功能化改性后,可作为性能优越的功能材料,能够高效降解水中的有机污染物。为了深入探究生物炭改性材料对水体有机污染物的去除作用,在概括生物炭吸附/降解水体有机污染物的一般机理的基础上,重点对生物炭改性方法及其对有机物的吸附/降解机制进行系统总结并作出展望。
Abstract:
Biochar is a carbon-rich product prepared from biomass raw materials. Biochar can effectively adsorb organic pollutants in water due to its advantages of large specific surface area, porous structure and abundant functional groups. Through functional modification, biochar can be used as a functional material with superior performance, which can efficiently degrade organic pollutants in water. In order to deeply explore the removing effect of biochar modified materials on organic pollutants in water, the biochar modification method and its adsorption/degradation mechanism of organic matter were mainly concluded systematicly and prospect was made, based on summarizing the general mechanism of biochar adsorption/degradation of organic pollutants in water.

参考文献/References:

[1]LEICHTWEIS J, SILVESTRI S, WELTER N, et al. Wastewater containing emerging contaminants treated by residues from the brewing industry based on biochar as a new CuFe2O4/biochar photocatalyst [J]. Process Safety and Environmental Protection, 2021, 150: 497-509.
[2]LI Z C, SELLAOUI L, FRANCO D, et al. Adsorption of hazardous dyes on functionalized multiwalled carbon nanotubes in single and binary systems: experimental study and physicochemical interpretation of the adsorption mechanism [J]. Chemical Engineering Journal, 2020, 389: 124467.
[3]MOHANRAJ J, DURGALAKSHMI D, BALAKUMAR S, et al. Low cost and quick time absorption of organic dye pollutants under ambient condition using partially exfoliated graphite [J]. Journal of Water Process Engineering, 2020, 34: 101078.
[4]LI H, ZHU L, ZHU X, et al. Dual-functional membrane decorated with flower-like metal-organic frameworks for highly efficient removal of insoluble emulsified oils and soluble dyes [J]. Journal of Hazardous Materials, 2021, 408: 124444.
[5]ZHAO Y M, SUN M, WANG X X, et al. Janus electrocatalytic flow-through membrane enables highly selective singlet oxygen production [J]. Nature Communications, 2020, 11(1):6228.
[6]ABOU DALLE A, DOMERGUE L, FOURCADE F, et al. Efficiency of DMSO as hydroxyl radical probe in an electrochemical advanced oxidation process-reactive oxygen species monitoring and impact of the current density [J]. Electrochimica Acta, 2017, 246: 1-8.
[7]HE H, HUANG B, FU G, et al. Coupling electrochemical and biological methods for 17alpha-ethinylestradiol removal from water by different microorganisms [J]. Journal of Hazardous Materials, 2017, 340: 120-129.
[8]HANAFI M F, SAPAWE N. A review on the current techniques and technologies of organic pollutants removal from water/wastewater [J]. Materials Today: Proceedings, 2020, 31: 158-165.
[9]MILENKOVIC D D, BOJIC A L, VELJKOVIC V B. Ultrasound-assisted adsorption of 4-dodecylbenzene sulfonate from aqueous solutions by corn cob activated carbon [J]. Ultrasonics Sonochemistry, 2013, 20(3): 955-962.
[10]SONG T T, TIAN W J, QIAO K L, et al. Adsorption behaviors of polycyclic aromatic hydrocarbons and oxygen derivatives in wastewater on N-doped reduced graphene oxide [J]. Separation and Purification Technology, 2021, 254: 117565.
[11]SANFORD J R, LARSON R A, RUNGE T. Nitrate sorption to biochar following chemical oxidation [J]. Science of the Total Environment, 2019, 669: 938-947.
[12]ANUPAMA, KHARE P. A comprehensive evaluation of inherent properties and applications of nano-biochar prepared from different methods and feedstocks [J]. Journal of Cleaner Production, 2021, 320: 128759.
[13]周建斌,马欢欢,章一蒙. 秸秆制备生物质炭技术及产业化进展[J].生物加工过程,2021,19(4):345-357.
[14]魏思洁,王寿兵. 生物炭制备技术及生物炭在生态环境领域的应用新进展 [J]. 复旦学报(自然科学版), 2022,61(3): 365-374.
[15]XIONG X N, YU I K M, CAO L C, et al. A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control [J]. Bioresource Technology, 2017, 246: 254-270.
[16]孙耀胜,么强,刘竞依,等. 生物炭材料在水体有机污染治理中的研究进展 [J]. 环境科学与技术, 2021, 44(1):170-180.
[17]CHEN Y D, LIN Y C, HO S H, et al. Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature [J]. Bioresource Technology, 2018, 259: 104-110.
[18]WANG J L, WANG S Z. Preparation, modification and environmental application of biochar: a review [J]. Journal of Cleaner Production, 2019, 227: 1002-1022.
[19]赵鹏,黄占斌,任忠秀,等. 中国主要退化土壤的改良剂研究与应用进展[J].排灌机械工程学报,2022,40(6):618-625.
[20]白珊,倪幸,杨瑗羽,等. 不同原材料生物炭对土壤重金属Cd、Zn的钝化作用[J].江苏农业学报,2021,37(5):1199-1205.
[21]李辰,陈颢明,胡亦舒,等. 富磷生物炭协助溶磷细菌对Cu的修复机制[J].生物加工过程,2022,20(6):658-664.
[22]ROSALES E, MEIJIDE J, PAZOS M, et al. Challenges and recent advances in biochar as low-cost biosorbent: from batch assays to continuous-flow systems [J]. Bioresource Technology, 2017, 246: 176-192.
[23]张瑞卿. 制备工艺对柠条生物炭理化性质和稳定性的影响 [D].太原:山西农业大学, 2020.
[24]LIU Z Y, WANG Z H, CHEN H X, et al. Hydrochar and pyrochar for sorption of pollutants in wastewater and exhaust gas: a critical review [J]. Environmental Pollution, 2021, 268: 115910.
[25]张晗,林宁,黄仁龙,等. 不同生物质制备的生物炭对菲的吸附特性研究 [J]. 环境工程, 2016,34(10):166-171.
[26]陈冠益,童图军,李瑞,等. 热解时间对污泥生物炭活化过硫酸盐的影响研究 [J]. 化工学报, 2022, 73(5): 2111-2119.
[27]CHENG N, WANG B, WU P, et al. Adsorption of emerging contaminants from water and wastewater by modified biochar: a review [J]. Environmental Pollution, 2021, 273: 116448.
[28]XIAO Y, LYU H H, TANG J C, et al. Effects of ball milling on the photochemistry of biochar: enrofloxacin degradation and possible mechanisms [J]. Chemical Engineering Journal, 2020, 384: 123311.
[29]YU F, TIAN F Y, ZOU H W, et al. ZnO/biochar nanocomposites via solvent free ball milling for enhanced adsorption and photocatalytic degradation of methylene blue [J]. Journal of Hazardous Materials, 2021, 415: 125511.
[30]PENG P, LANG Y H, WANG X M. Adsorption behavior and mechanism of pentachlorophenol on reed biochars: pH effect, pyrolysis temperature, hydrochloric acid treatment and isotherms [J]. Ecological Engineering, 2016, 90: 225-233.
[31]CHEN T W, LUO L, DENG S H, et al. Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure [J]. Bioresource Technology, 2018, 267: 431-437.
[32]TANG Y, LI Y, ZHAN L, et al. Removal of emerging contaminants (bisphenol A and antibiotics) from kitchen wastewater by alkali-modified biochar [J]. Science of the Total Environment, 2022, 805: 150158.
[33]YANG F, JIANG Q, ZHU M R, et al. Effects of biochars and MWNTs on biodegradation behavior of atrazine by Acinetobacter lwoffii DNS32 [J]. Science of the Total Environment, 2017, 577: 54-60.
[34]ZHAO C X, WANG B, THENG B K G, et al. Formation and mechanisms of nano-metal oxide-biochar composites for pollutants removal: a review [J]. Science of the Total Environment, 2021, 767: 145305.
[35]AMUSAT S O, KEBEDE T G, DUBE S, et al. Ball-milling synthesis of biochar and biochar-based nanocomposites and prospects for removal of emerging contaminants: a review [J]. Journal of Water Process Engineering, 2021, 41: 101993.
[36]QIU Y W, XU X Y, XU Z B, et al. Contribution of different iron species in the iron-biochar composites to sorption and degradation of two dyes with varying properties [J]. Chemical Engineering Journal, 2020, 389: 124471.
[37]段佳男,叶志伟,王曦,等. 改性稻壳水热炭对苯酚的吸附 [J]. 应用化工, 2022,51(1): 17-21,27.
[38]MEILANI V, LEE J I, KANG J K, et al. Application of aluminum-modified food waste biochar as adsorbent of fluoride in aqueous solutions and optimization of production using response surface methodology [J]. Microporous and Mesoporous Materials, 2021, 312: 110764.
[39]SHEN Q B, WANG Z Y, YU Q, et al. Removal of tetracycline from an aqueous solution using manganese dioxide modified biochar derived from Chinese herbal medicine residues [J]. Environmental Research, 2020, 183: 109195.
[40]AHMARUZZAMAN M. Biochar based nanocomposites for photocatalytic degradation of emerging organic pollutants from water and wastewater [J]. Materials Research Bulletin, 2021, 140: 111262.
[41]ZHANG H Y, WANG Z W, LI R N, et al. TiO2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices [J]. Chemosphere, 2017, 185: 351-360.
[42]CAI H, ZHANG D S, MA X L, et al. A novel ZnO/biochar composite catalysts for visible light degradation of metronidazole [J]. Separation and Purification Technology, 2022, 288: 120633.
[43]KANG F Y, SHI C, LI W C, et al. Honeycomb like CdS/sulphur-modified biochar composites with enhanced adsorption-photocatalytic capacity for effective removal of rhodamine B [J]. Journal of Environmental Chemical Engineering, 2022, 10: 106942.
[44]SUTAR S, OTARI S, JADHAV J. Biochar based photocatalyst for degradation of organic aqueous waste: a review [J]. Chemosphere, 2022, 287 : 132200.
[45]LI S, WANG Z W, ZHAO X T, et al. Insight into enhanced carbamazepine photodegradation over biochar-based magnetic photocatalyst Fe3O4/BiOBr/BC under visible LED light irradiation [J]. Chemical Engineering Journal, 2019, 360: 600-611.
[46]AN X F, WANG H X, DONG C, et al. Core-shell P-laden biochar/ZnO/g-C3N4 composite for enhanced photocatalytic degradation of atrazine and improved P slow-release performance [J]. Journal of Colloid and Interface Science, 2022, 608: 2539-2548.
[47]WEI J, LIU Y T, ZHU Y H, et al. Enhanced catalytic degradation of tetracycline antibiotic by persulfate activated with modified sludge bio-hydrochar [J]. Chemosphere, 2020, 247: 125854.
[48]张凯,韦秀丽,王冰,等. Fe3O4改性水热炭活化过硫酸钠降解罗丹明B [J]. 化工进展, 2020,39(7): 2867-2875.
[49]KRASUCKA P, PAN B, SIK OK Y, et al. Engineered biochar-A sustainable solution for the removal of antibiotics from water [J]. Chemical Engineering Journal, 2021, 405: 126926.
[50]张太平,肖嘉慧,胡凤洁. 生物炭固定化微生物技术在去除水中污染物的应用研究进展 [J]. 生态环境学报, 2021, 30(5):1084-1093.
[51]江群,杨帆,朱墨染,等. 玉米秸秆生物炭固定化Acinetobacter lwoffii DNS32性能研究 [J]. 农业环境科学学报, 2017, 36(2): 382-386.
[52]LI X, QIN Y, JIA Y, et al. Preparation and application of Fe/biochar (Fe-BC) catalysts in wastewater treatment: a review [J]. Chemosphere, 2021, 274: 129766.
[53]李玲. 铁锰二元氧化物改性生物炭类芬顿降解水体中有机污染物的行为机理研究 [D]. 长沙:湖南大学, 2020.
[54]MENG L R, YIN W H, WANG S S, et al. Photocatalytic behavior of biochar-modified carbon nitride with enriched visible-light reactivity [J]. Chemosphere, 2020, 239: 124713.
[55]ZHU N Y, LI C Q, BU L J, et al. Bismuth impregnated biochar for efficient estrone degradation: the synergistic effect between biochar and Bi/Bi2O3 for a high photocatalytic performance [J]. Journal of Hazardous Materials, 2020, 384: 121258.

相似文献/References:

[1]兰 天,张 辉,刘 源,等.玉米秸秆生物炭对Pb2+、Cu2+的吸附特征与机制[J].江苏农业学报,2016,(02):368.[doi:10.3969/j.issn.1000-4440.2016.02.021]
 LAN Tian,ZHANG Hui,LIU Yuan,et al.Adsorption characteristics and mechanisms of Pb2+ and Cu2+ on corn straw biochar[J].,2016,(03):368.[doi:10.3969/j.issn.1000-4440.2016.02.021]
[2]周运来,张振华,范如芹,等.秸秆还田方式对水稻田土壤理化性质及水稻产量的影响[J].江苏农业学报,2016,(04):786.[doi:10.3969/j.issn.100-4440.2016.04.012]
 ZHOU Yun-lai,ZHANG Zhen-hua,FAN Ru-qin,et al.Effects of straw-returning modes on paddy soil properties and rice yield[J].,2016,(03):786.[doi:10.3969/j.issn.100-4440.2016.04.012]
[3]刘杰,韩士群,齐建华,等.生物碳含量对底泥活化原位脱氮及微生物活性的影响[J].江苏农业学报,2016,(01):106.[doi:10.3969/j.issn.1000-4440.2016.01.016 ]
 LIU Jie,HAN Shi-qun,QI Jian-hua,et al.Influence of biochar content on in-situ denitrification of sediment and microbial activity[J].,2016,(03):106.[doi:10.3969/j.issn.1000-4440.2016.01.016 ]
[4]乔光,田田,洪怡,等.生物炭对玛瑙红樱桃生长、果实品质及土壤矿质元素的影响[J].江苏农业学报,2017,(04):904.[doi:doi:10.3969/j.issn.1000-4440.2017.04.027]
 QIAO Guang,TIAN Tian,HONG Yi,et al.Effects of biochar on growth and fruit quality of Prunus pseudocerasu Manaohong and mineral element contents in soil[J].,2017,(03):904.[doi:doi:10.3969/j.issn.1000-4440.2017.04.027]
[5]尹微琴,孟莉蓉,郁彬琦,等.垫料生物炭对土壤镉的钝化作用[J].江苏农业学报,2018,(01):62.[doi:doi:10.3969/j.issn.1000-4440.2018.01.009]
 YIN Wei-qin,MENG Li-rong,YU Bin-qi,et al.Passivation of Cd in soil by bedding materials derived-biochar[J].,2018,(03):62.[doi:doi:10.3969/j.issn.1000-4440.2018.01.009]
[6]范如芹,罗佳,张振华.复合调理剂对栽培基质性能及蔬菜生长的影响[J].江苏农业学报,2018,(04):887.[doi:doi:10.3969/j.issn.1000-4440.2018.04.025]
 FAN Ru-qin,LUO Jia,ZHANG Zhen-hua.Effects of composite conditioner on properties of soilless conditioner and vegetable growth[J].,2018,(03):887.[doi:doi:10.3969/j.issn.1000-4440.2018.04.025]
[7]丁俊男,于少鹏,李鑫,等.生物炭对大豆生理指标和农艺性状的影响[J].江苏农业学报,2019,(04):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
 DING Jun nan,YU Shao peng,LI Xin,et al.Effects of biochar application on soybean physiological indices and agronomic traits[J].,2019,(03):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
[8]范如芹,周运来,李赟,等.秸秆发酵还田提升土壤腐殖质含量与品质[J].江苏农业学报,2019,(05):1095.[doi:doi:10.3969/j.issn.1000-4440.2019.05.014]
 FAN Ru-qin,ZHOU Yun-lai,LI Yun,et al.Straw fermentation incorporation improves soil humus content and quality[J].,2019,(03):1095.[doi:doi:10.3969/j.issn.1000-4440.2019.05.014]
[9]张晟,张徐洁,赵远,等.不同温度制备的水稻秸秆生物炭对稻田土壤固碳减排及微生物群落结构的影响[J].江苏农业学报,2019,(05):1102.[doi:doi:10.3969/j.issn.1000-4440.2019.05.015]
 ZHANG Sheng,ZHANG Xu-jie,ZHAO Yuan,et al.Effects of rice straw biochar prepared at different pyrolysis temperatures on carbon sequestration and mitigation and microbial community structure in paddy soil[J].,2019,(03):1102.[doi:doi:10.3969/j.issn.1000-4440.2019.05.015]
[10]涂保华,胡茜,张艺,等.基于不同类型秸秆制备的生物炭对稻田土壤温室气体排放的影响[J].江苏农业学报,2019,(06):1374.[doi:doi:10.3969/j.issn.1000-4440.2019.06.015]
 TU Bao-hua,HU Qian,ZHANG Yi,et al.Effects of biochar based on different types of straw on greenhouse gas emission from paddy soil[J].,2019,(03):1374.[doi:doi:10.3969/j.issn.1000-4440.2019.06.015]

备注/Memo

备注/Memo:
收稿日期:2022-08-30 基金项目:太湖水污染治理专项 (TH2019201);江苏省苏州市民生科技项目(SS2019028) 作者简介:顾鑫才(1999-),男,江苏南通人,硕士研究生,主要研究方向为废水处理与资源化利用技术。(E-mail)guxincai1202@163.com 通讯作者:陈丙法,(E-mail)bfchen@jaas.ac.cn;韩士群,(E-mail)shqunh@126.com
更新日期/Last Update: 2023-07-11