[1]曾芳,高娅,潘鑫,等.调控穗发芽的植物内源激素研究进展[J].江苏农业学报,2023,(03):848-858.[doi:doi:10.3969/j.issn.1000-4440.2023.03.027]
 ZENG Fang,GAO Ya,PAN Xin,et al.Research progress on plant endogenous hormones regulating pre-harvest sprouting[J].,2023,(03):848-858.[doi:doi:10.3969/j.issn.1000-4440.2023.03.027]
点击复制

调控穗发芽的植物内源激素研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年03期
页码:
848-858
栏目:
综述
出版日期:
2023-06-30

文章信息/Info

Title:
Research progress on plant endogenous hormones regulating pre-harvest sprouting
作者:
曾芳高娅潘鑫邬晓勇孙雁霞
(成都大学农业农村部杂粮加工重点实验室,四川成都610106)
Author(s):
ZENG FangGAO YaPAN XinWU Xiao-yongSUN Yan-xia
(Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China)
关键词:
穗发芽作物育种植物内源激素
Keywords:
pre-harvest sproutingcrop breedingplant endogenous hormones
分类号:
S311
DOI:
doi:10.3969/j.issn.1000-4440.2023.03.027
文献标志码:
A
摘要:
在作物生产中,穗发芽(PHS)是一种十分普遍的现象,该现象主要受作物生长外部环境和种子自身生理生化特性的影响,严重影响了作物的产量、品质和食用价值。随着世界人口增长和自然灾害日益频繁发生,粮食产量需要稳步提高以提升人民适应风险的能力。本文主要对赤霉素(GA)、乙烯(ETH)、油菜素甾醇(BR)、脱落酸(ABA)、生长素(IAA)、茉莉酸(JA)和细胞分裂素(CTK)等植物内源激素在调控种子PHS过程中的作用及不同激素之间相互作用的最新研究进展进行综述,旨在理解在调控作物PHS过程中,植物激素间相互作用的分子机制,以期为作物抗PHS育种和预防PHS提供新思路。
Abstract:
Pre-harvest sprouting (PHS) is a very common phenomenon in crop production. PHS is mainly affected by the external environment during crop growth and the physiological and biochemical characteristics. PHS seriously affects the yield, quality and edible value of crops. As the world’s population grows and natural disasters become more frequent, grain production needs to be steadily increased in order to improve people’s ability to adapt to risks. In this paper, the role of plant endogenous hormones such as gibberellin (GA), ethylene (ETH), brassinosteroid (BR), abscisic acid (ABA), auxin (IAA), jasmonic acid (JA) and cytokinin (CTK) in regulating seed PHS and the latest progress in the interaction between different hormones were reviewed. The purpose of this paper was to understand the molecular mechanism of the interaction between plant hormones in the regulation of crop PHS, so as to provide new ideas for crop anti-PHS breeding and prevention of PHS.

参考文献/References:

[1]BEWLEY J D, BRADFORD K J, HILHORST H, et al. Seeds: physiology of development, germination and dormancy[M]. 3rd ed. New York-Heidelberg-Dordrecht-London: Cambridge University Press, 2013: 289.
[2]MIAO C B, WANG Z, ZHANG L, et al. The grain yield modulator miR156 regulates seed dormancy through the gibberellin pathway in rice[J]. Nature Communications, 2019, 10(1): 3822.
[3]LI T, WANG H J, XU X J, et al. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms[J]. Journal of Experimental Botany, 2021, 72(8): 2857-2876.
[4]LI C D, NONOGAKI H, BARRERO J M. Seed dormancy, germination, and pre-harvest sprouting[J]. Frontiers in Plant Science, 2018, 9: 1783.
[5]LEE G A, JEON Y A, LEE H S, et al. Variation in pre-harvest sprouting resistance, seed germination and changes in abscisic acid levels during grain development in diverse rice genetic resources[J]. Plant Genetic Resources, 2016, 16(1): 18-27.
[6]TAO L H, WANG X, TAN H J, et al. Physiological analysis on pre-harvest sprouting in recombinant inbred rice lines[J]. Frontiers of Agriculture in China, 2007, 1(1): 24-29.
[7]GUBLER F, MILLAR A A, JACOBSEN J V. Dormancy release, ABA and pre-harvest sprouting[J]. Current Opinion in Plant Biology, 2005, 8(2): 183-187.
[8]SIMSEK S, OHM J B, LU H Y, et al. Effect of pre-harvest sprouting on physicochemical properties of starch in wheat[J]. Journal of the Science of Food and Agriculture, 2014, 3(2): 205-212.
[9]SATO K, YAMANE M, YAMAJI N, et al. Alanine aminotransferase controls seed dormancy in barley[J]. Nature Communications, 2016, 7: 11625.
[10]MEYER R S, PURUGGANAN M D. Evolution of crop species: genetics of domestication and diversification[J]. Nature Reviews Genetics, 2013, 14(12): 840-852.
[11]FINCHH-SAVAGE W E, FOOTITT S. Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments[J]. Journal of Experimental Botany, 2017, 68(4): 843-856.
[12]FINCHH-SAVAGE W E, LEUBNER-METZGER G. Seed dormancy and the control of germination[J]. New Phytologist, 2006, 171(3): 501-523.
[13]HOLDSWORTH M J, FINCH-SAVAGE W E, GRAPPIN P, et al. Post-genomics dissection of seed dormancy and germination[J]. Trends in Plant Science, 2008, 13(1): 7-13.
[14]陈兵先,刘军. 水稻穗萌及其调控的研究进展[J]. 种子, 2017, 36(2): 49-55.
[15]KING R W, RICHARDS R A. Water uptake in relation to pre-harvest sprouting damage in wheat: ear characteristics[J]. Australian Journal of Agricultural Research, 1984, 35(3): 327-336.
[16]BROWN L K, WIERSMA A T, OLSON E L. Preharvest sprouting and α-amylase activity in soft winter wheat[J]. Journal of Cereal Science, 2018, 79: 311-318.
[17]SHIBATA M, COELHO C M M, DE GARIGHAN J A, et al. Seed development of Araucaria angustifolia: plant hormones and germinability in 2 years of seeds production[J]. New Forests, 2021, 52(5): 759-775.
[18]TOPHAM A T, TAYLOR R E, YAN D W, et al. Temperature variability is integrated by a spatially embedded decision-making center to break dormancy in Arabidopsis seeds[J]. PNAS, 2017, 114(25): 6629-6634.
[19]BUIJS G, VOGELZANG A, NIJVEEN H, et al. Dormancy cycling: translation-related transcripts are the main difference between dormant and non-dormant seeds in the field[J]. The Plant Journal, 2020, 102(2): 327-339.
[20]FOOTITT S, HUANG Z Y, CLAY H A, et al. Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling, resulting in winter and summer annual phenotypes[J]. The Plant Journal, 2013, 74(6): 1003-1015.
[21]KENDALL S L, HELLWEGE A, MARRIOT P, et al. Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors[J]. Plant Cell, 2011, 23(7): 2568-2580.
[22]杜世超,薛盈文,郭伟,等. 不同温湿度环境对黑龙江省春小麦穗发芽的影响[J]. 湖北农业科学, 2022, 61(3): 26-31.
[23]毛琪,晏兴珠,王仕玉,等. 30份藜麦资源的穗发芽抗性评价[J]. 种子, 2021, 40(10): 62-66,73.
[24]DE WIT M, GALVAO V C, FANKHAUSER C. Light-mediated hormonal regulation of plant growth and development[J]. Annual Review of Plant Biology, 2016, 67: 513-537.
[25]JIANG Z M, XU G, JING Y J, et al. Phytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in Arabidopsis[J]. Nature Communications, 2016, 7: 12377.
[26]ALI F, QANMBER G, LI F G, et al. Updated role of ABA in seed maturation, dormancy, and germination[J]. Journal of Advanced Research, 2021, 35: 199-214.
[27]OH E, KIM J, PARK E, et al. PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana[J]. Plant Cell, 2004, 16(11): 3045-3058.
[28]YANG L W, JIANG Z M, JING Y J, et al. PIF1 and RVE1 form a transcriptional feedback loop to control light-mediated seed germination in Arabidopsis[J]. Journal of Integrative Plant Biology, 2020, 62(9): 1372-1384.
[29]GU D C, JI R J, HE C M, et al. Arabidopsis histone methyltransferase SUVH5 is a positive regulator of light-mediated seed germination[J]. Frontiers in Plant Science, 2019, 10: 841.
[30]YANG L W, JIANG Z M, LIU S R, et al. Interplay between REVEILLE1 and RGA-LIKE2 regulates seed dormancy and germination in Arabidopsis[J]. New Phytologist, 2020, 225(4): 1593-1605.
[31]KING R W, WETTSTEIN-KNOWLES P V. Epicuticular waxes and regulation of ear wetting and pre-harvest sprouting in barley and wheat[J]. Euphytica, 2000, 112(2): 157-166.
[32]PATWA N, PENNING B W. Environmental impact on cereal crop grain damage from pre-harvest sprouting and late maturity α-amylase[M]. New York: Springer-Verlag, 2020: 23-41.
[33]SOPER J F, CANTRELL R G, DICK J W. Sprouting damage and kernel color relationships in durum wheat[J]. Crop Science, 1989, 29(4): 895-898.
[34]FAKTHONGPHAN J, BAI G H, ST AMAND P, et al. Identification of markers linked to genes for sprouting tolerance (independent of grain color) in hard white winter wheat (HWWW)[J]. Theoretical and Applied Genetics, 2016, 129(2): 419-430.
[35]RODRGUEZ M V, ARATA G J, DAZ S M, et al. Phenotyping for resistance to pre-harvest sprouting in grain sorghum[J]. Seed Science Research, 2021, 31(3): 178-187.
[36]ARC E, SECHET J, CORBINEAU F, et al. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination[J]. Frontiers in Plant Science, 2013, 4: 63.
[37]WILLIS C G, BASKIN C C, BASKIN J M, et al. The evolution of seed dormancy: environmental cues, evolutionary hubs, and diversification of the seed plants[J]. New Phytologist, 2014, 203(1): 300-309.
[38]CARRERA-CASTANO G, CALLEJA-CABRERA J, PERNAS M, et al. An updated overview on the regulation of seed germination[J]. Plants, 2020, 9(6): 703.
[39]DAMARIS R N, LIN Z Y, YANG P F, et al. The rice α-amylase, conserved regulator of seed maturation and germination[J]. International Journal of Molecular Sciences, 2019, 20(2): 450.
[40]TAI L, WANG H J, XU X J, et al. Cereal pre-harvest sprouting: a global agricultural disaster regulated by complex genetic and biochemical mechanisms[J]. Journal of Experimental Botany, 2021, 72(8): 2857-2876.
[41]ZHANG M, YUAN B, LENG P. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit[J]. Journal of Experimental Botany, 2009, 60(6): 1579-1588.
[42]唐双,于安民,刘爱忠. 脱落酸和赤霉素相互作用调控种子休眠或萌发的分子机理[J]. 分子植物育种, 2022, 20(20): 6893-6900.
[43]于敏,徐恒,张华,等. 植物激素在种子休眠与萌发中的调控机制[J]. 植物生理学报, 2016, 52(5): 599-606.
[44]徐恒恒,黎妮,刘树君,等. 种子萌发及其调控的研究进展[J]. 作物学报, 2014, 40(7): 1141-1156.
[45]黎家,李传友. 新中国成立70年来植物激素研究进展[J]. 中国科学: 生命科学, 2019, 49(10): 1227-1281.
[46]SHU K, ZHOU W G, CHEN F, et al. Abscisic acid and gibberellins antagonistically mediate plant development and abiotic stress responses[J]. Frontiers in Plant Science, 2018, 9: 416.
[47]YANG C W, LI L. Hormonal regulation in shade avoidance[J]. Frontiers in Plant Science, 2017, 8: 1527.
[48]CHITNIS V R, GAO F, YAO Z, et al. After-ripening induced transcriptional changes of hormonal genes in wheat seeds: the cases of brassinosteroids, ethylene, cytokinin and salicylic acid[J]. PLoS One, 2014, 9(1): e87543.
[49]CUI D Y, ZHAO J B, JING Y J, et al. The Arabidopsis IDD14, IDD15, and IDD16 cooperatively regulate lateral organ morphogenesis and gravitropism by promoting auxin biosynthesis and transport[J]. PLoS Genet, 2013, 9(9): e1003759.
[50]SHAN X Y, YAN J B, XIE D X. Comparison of phytohormone signaling mechanisms[J]. Current Opinion in Plant Biology, 2012, 15(1): 84-91.
[51]SHU K, CHEN Q, WU Y R, et al. ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels[J]. The Plant Journal, 2016, 85(3): 348-361.
[52]HU Y R, HAN X, YANG M L, et al. The transcription factor INDUCER OF CBF EXPRESSION1 interacts with ABSCISIC ACID INSENSITIVE5 and DELLA proteins to fine-tune abscisic acid signaling during seed germination in Arabidopsis[J]. Plant Cell, 2019, 31(7): 1520-1538.
[53]CHEN W Q, WANG W, LYU Y S, et al. OsVP1 activates Sdr4 expression to control rice seed dormancy via the ABA signaling pathway[J]. The Crop Journal, 2021, 9(1): 68-78.
[54]SUN T P, KAMIYA Y. The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis[J]. The Plant Cell, 1994, 6(10): 1509-1518.
[55]李燕,汝姣,姬越. GA处理下咖啡黄葵种子萌发及与α-淀粉酶相关性研究[J]. 种子, 2017, 36(3): 80-83.
[56]KANEKO M, ITOH H, UEGUCHI-TANAKA M, et al. The α-amylase induction in endosperm during rice seed germination is caused by gibberellin synthesized in epithelium[J]. Plant Physiology, 2002, 128(4): 1264-1270.
[57]SUGIMOTO N, TAKEDA G, NAGATO Y, et al. Temporal and spatial expression of the α-amylase gene during seed germination in rice and barley[J]. Plant Cell Physiology, 1998, 39(3): 323-333.
[58]QIN M M, ZHANG Y, YANG Y M, et al. Seed-specific overexpression of SPL12 and IPA1 improves seed dormancy and grain size in rice[J]. Frontiers in Plant Science, 2020, 11:532771.
[59]CORBINEAU F, XIA Q, BAILLY C, et al. Ethylene, a key factor in the regulation of seed dormancy[J]. Frontiers in Plant Science, 2014, 5: 539.
[60]XIA Q, SAUX M, PONNAIAH M, et al. One way to achieve germination: common molecular mechanism induced by ethylene and after-ripening in sunflower seeds[J]. International Journal of Molecular Sciences, 2018, 19(8): 2464.
[61]RZEWUSKI G, SAUTER M. Ethylene biosynthesis and signaling in rice[J]. Plant Science, 2008, 175(1/2): 32-42.
[62]WANG N N, SHIH M C, LI N. The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses[J]. Journal of Experimental Botany, 2005, 56(413): 909-920.
[63]宋松泉,刘军,徐恒恒,等. 乙烯的生物合成与信号及其对种子萌发和休眠的调控[J]. 作物学报, 2019, 45(7): 969-981.
[64]KEPCZYNSKI J, CORBINEAU F, CME D. Responsiveness of Amaranthus retroflexus seeds to ethephon, 1-aminocyclopropane 1-carboxylic acid and gibberellic acid in relation to temperature and dormancy[J]. Plant Growth Regulation, 1996, 20: 259-265.
[65]RIBEIRO D M, BARROS R S. Sensitivity to ethylene as a major component in the germination of seeds of Stylosanthes humilis[J]. Seed Science Research, 2006, 16(1): 37-45.
[66]NE’EMAN G, HENIG-SEVER N, ESHEL A. Regulation of the germination of Rhus coriaria, a post-fire pioneer, by heat, ash, pH, water potential and ethylene[J]. Physiologia Plantarum, 1999, 106(1): 47-52.
[67]LI X Y, CHEN T T, LI Y, et al. ETR1/RDO3 regulates seed dormancy by relieving the inhibitory effect of the ERF12-TPL complex on DELAY OF GERMINATION1 expression[J]. Plant Cell, 2019, 31(4): 832-847.
[68]赵荣秋,杨湘虹. 乙烯在种子休眠与萌发中的调控作用[J]. 长江大学学报(自然科学版), 2016, 13(33): 47-51,56.
[69]WANG X, GOMES M M, BAILLY C, et al. Role of ethylene and proteolytic N-degron pathway in the regulation of Arabidopsis seed dormancy[J].Journal of Integrative Plant Biology, 2021, 63(12): 2110-2122.
[70]STEBER C M, MCCOURT P. A role for brassinosteroids in germination in Arabidopsis[J]. Plant Physiology, 2001, 125(2): 763-769.
[71]DIVI U K, KRISHNA P. Overexpression of the brassinosteroid biosynthetic gene AtDWF4 in Arabidopsis seeds overcomes abscisic acid-induced inhibition of germination and increases cold tolerance in transgenic seedlings[J]. Journal of Plant Growth Regulation, 2010, 29(4): 385-393.
[72]KIM S Y, WARPEHA K M, HUBER S C. The brassinosteroid receptor kinase, BRI1, plays a role in seed germination and the release of dormancy by cold stratification[J]. Journal of Plant Physiology, 2019, 241: 153031.
[73]倪祥银,齐泽民,廖姝,等. 外源水杨酸对NaCl胁迫下大豆种子萌发和幼苗生长生理的影响[J]. 西北植物学报, 2014, 34(1): 106-111.
[74]ILYAS N, GULL R, MAZHAR R, et al. Influence of salicylic acid and jasmonic acid on wheat under drought stress[J]. Communications in Soil Science and Plant Analysis, 2017, 48(22): 1-9.
[75]BARRERO J M, JACOBSEN J V, TALBOT M J, et al. Grain dormancy and light quality effects on germination in the model grass Brachypodium distachyon[J]. New Phytologist, 2012, 193(2): 376-386.
[76]CANTORO R, CROCCO C D, BENECH-ARNOLD R L, et al. In vitro binding of Sorghum bicolor transcription factors ABI4 and ABI5 to a conserved region of a GA 2-OXIDASE promoter: possible role of this interaction in the expression of seed dormancy[J]. Journal of Experimental Botany, 2013, 64(18): 5721-5735.
[77]王熹,陶龙兴,黄效林,等. 外源ABA抑制水稻种子发芽的生理机制[J]. 作物学报, 2004,30(12): 1250-1253.
[78]HOLDSWORTH M J, BENTSINK L, SOPPE W J J. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination[J]. New Phytologist, 2008, 179(1): 33-54.
[79]WANG Y F, HOU Y X, QIU J H, et al. Abscisic acid promotes jasmonic acid biosynthesis via a ‘SAPK10-bZIP72-AOC’ pathway to synergistically inhibit seed germination in rice (Oryza sativa)[J]. New Phytologist, 2020, 228(4): 1336-1353.
[80]YU L H, WU J, ZHANG Z S, et al. Arabidopsis MADS-box transcription factor AGL21 acts as environmental surveillance of seed germination by regulating ABI5 expression[J]. Molecular Plant, 2017, 10(6): 834-845.
[81]DU L, XU F, FANG J, et al. Endosperm sugar accumulation caused by mutation of PHS8/ISA1 leads to pre-harvest sprouting in rice[J]. The Plant Journal, 2018, 95(3): 545-556.
[82]WANG Z J, JI H T, YUAN B J, et al. ABA signalling is fine-tuned by antagonistic HAB1 variants[J]. Nature Communications, 2015, 6: 8138.
[83]WU Q, BAI X, WU X Y, et al. Transcriptome profiling identifies transcription factors and key homologs involved in seed dormancy and germination regulation of Chenopodium quinoa[J]. Plant Physiology and Biochemistry, 2020, 151: 443-456.
[84]WANG J, DENG Q W, LI Y H, et al. Transcription factors Rc and OsVP1 coordinately regulate preharvest sprouting tolerance in red pericarp rice[J]. Journal of Agricultural and Food Chemistry, 2020, 68(50): 14748-14757.
[85]BASSEL G W. To grow or not to grow?[J]. Trends Plant Sci, 2016, 21(6): 498-505.
[86]JIANG Y M, JOYCE D C. ABA effects on ethylene production, PAL activity, anthocyanin and phenolic contents of strawberry fruit[J]. Plant Growth Regulation: An International Journal on Natural and Synthetic Regulators, 2003, 39(2): 171-174.
[87]LI Z F, ZHANG L X, YU Y W, et al. The ethylene response factor AtERF11 that is transcriptionally modulated by the bZIP transcription factor HY5 is a crucial repressor for ethylene biosynthesis in Arabidopsis[J]. The Plant Journal, 2011, 68(1): 88-99.
[88]TANAKA Y, SANO T, TAMAOKI M, et al. Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis[J]. Plant Physiology, 2005, 138(4): 2337-2343.
[89]ZHAO H Y, ZHANG H M, CUI P, et al. The putative E3 ubiquitin ligase ECERIFERUM9 regulates abscisic acid biosynthesis and response during seed germination and postgermination growth in Arabidopsis[J]. Plant Physiology, 2014, 165(3): 1255-1268.
[90]GHASSEMIAN M, NAMBARA E, CUTLER S, et al. Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis[J]. Plant Cell, 2000, 12(7): 1117-1126.
[91]HARRISON M A. Cross-talk between phytohormone signaling pathways under both optimal and stressful environmental conditions[M]. Berlin, Heidelberg: Springer, 2012: 49-76.
[92]LIU X D, ZHANG H, ZHAO Y, et al. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis[J]. PNAS, 2013, 110(38): 15485-15490.
[93]LIU A H, GAO F, KANNO Y, et al. Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling[J]. PLoS One, 2013, 8(2): e56570.
[94]李继洋. 生长素响应因子ARF10、16、17调控拟南芥种子休眠和萌发的分子机制研究[D]. 乌鲁木齐: 新疆农业大学, 2018.
[95]NEMHAUSER J L, HONG F X, CHORY J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses[J]. Cell, 2006, 126(3): 467-475.
[96]SANTNER A, ESTELLE M. Recent advances and emerging trends in plant hormone signalling[J]. Nature, 2009, 459: 1071-1078.
[97]WOLTERS H, JURGENS G. Survival of the flexible: hormonal growth control and adaptation in plant development[J]. Nature Reviews Genetics, 2009, 10(5): 305-317.
[98]WANG L, HUA D, HE J, et al. Auxin Response Factor 2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis[J]. PLoS Genetics, 2011, 7(7): e1002172.
[99]VARSHNEY V, MAJEE M. JA shakes hands with ABA to delay seed germination[J]. Trends Plant Sci, 2021, 26(8): 764-766.
[100]PAUWELS L, BARBERO G F, GEERINCK J, et al. NINJA connects the co-repressor TOPLESS to jasmonate signalling[J]. Nature, 2010, 464(7289): 788-791.
[101]THINES B, KATSIR L, MELOTTO M, et al. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling[J]. Nature, 2007, 448: 661-665.
[102]ALEMAN F, YAZAKI J, LEE M, et al. An ABA-increased interaction of the PYL6 ABA receptor with MYC2 transcription factor: a putative link of ABA and JA signaling[J]. Scientific Reports, 2016, 6: 28941.
[103]PAN J J, HU Y R, WANG H P, et al. Molecular mechanism underlying the synergetic effect of jasmonate on abscisic acid signaling during seed germination in Arabidopsis[J]. Plant Cell, 2020, 32(12): 3846-3865.
[104]JU L, JING Y X, SHI P T, et al. JAZ proteins modulate seed germination through interaction with ABI5 in bread wheat and Arabidopsis[J]. New Phytologist, 2019, 223(1): 246-260.
[105]HWANG I, SHEEN J, MULLER B. Cytokinin signaling networks[J]. Annual Review of Plant Biology, 2012, 63: 353-380.
[106]SAKAKIBARA H. Cytokinins: activity, biosynthesis, and translocation[J]. Annual Review of Plant Biology, 2006, 57: 431-449.
[107]ZUBO Y O, SCHALLER G E. Role of the cytokinin-activated type-B response regulators in hormone crosstalk[J]. Plants, 2020, 9(2): 166.
[108]TUAN P A, YAMASAKI Y, KANNO Y, et al. Transcriptomics of cytokinin and auxin metabolism and signaling genes during seed maturation in dormant and non-dormant wheat genotypes[J]. Scientific Reports, 2019, 9(1): 3983.
[109]WANG Y P, LI L, YE T T, et al. Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by downregulating ABI5 expression[J]. The Plant Journal, 2011, 68(2): 249-261.
[110]GUAN C M, WANG X C, FENG J, et al. Cytokinin antagonizes abscisic acid-mediated inhibition of cotyledon greening by promoting the egradation of abscisic acid insensitive5 protein in Arabidopsis[J]. Plant Physiology, 2014, 164(3): 1515-1526.
[111]AHAMMED G J, GANTAIT S, MITRA M, et al. Role of ethylene crosstalk in seed germination and early seedling development: a review[J]. Plant Physiology and Biochemistry, 2020, 151: 124-131.
[112]WAADT R, SELLER C A, HSU P K, et al. Plant hormone regulation of abiotic stress responses[J]. Nature Reviews Molecular Cell Biology, 2022,23:680-694.

相似文献/References:

[1]赵庆勇,陈涛,赵春芳,等.粳稻穗发芽的品种(系)间差异及其影响因素分析[J].江苏农业学报,2017,(03):481.[doi:doi:10.3969/j.issn.1000-4440.2017.03.001]
 ZHAO Qing-yong,CHEN Tao,ZHAO Chun-fang,et al.Varietal difference of pre-harvest sprouting and its influencing factors in rice[J].,2017,(03):481.[doi:doi:10.3969/j.issn.1000-4440.2017.03.001]
[2]裘实,卫平洋,魏海燕,等.穗发芽程度对粳稻稻米品质和蛋白质组分的影响[J].江苏农业学报,2019,(03):523.[doi:doi:10.3969/j.issn.1000-4440.2019.03.004]
 QIU Shi,WEI Ping-yang,WEI Hai-yan,et al.Effect of preharvest sprouting on quality and protein components of Japonica rice[J].,2019,(03):523.[doi:doi:10.3969/j.issn.1000-4440.2019.03.004]

备注/Memo

备注/Memo:
收稿日期:2022-06-26 基金项目:四川省科技厅项目(2021ZHFP0018);农业农村部杂粮加工重点实验室开放基金项目(2017Y0012)作者简介:曾芳(1998-),女,江西萍乡人,硕士研究生,主要从事藜麦育种与分子生物学研究。(E-mail)zengfang2549348536@163.com 通讯作者:孙雁霞,(E-mail)sunyanxia1976@cdu.edu.cn
更新日期/Last Update: 2023-07-11