参考文献/References:
[1]ASHLEY M K, GRANT M, GRABOV A. Plant responses to potassium deficiencies: a role for potassium transport proteins[J]. J Exp Bot, 2006, 57(2): 425-436.
[2]MAATHUIS F J, SANDERS D. Plasma membrane transport in context — making sense out of complexity[J]. Curr Opin Plant Biol, 1999, 2(3):236-243.
[3]MAATHUIS F J, SANDERS D. Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana[J]. PNAS,1994, 91(20): 9272-9276.
[4]MAATHUIS F J, SANDERS D. Regulation of K+ absorption in plant root cells by external K+: interplay of different plasma membrane K+ transporters[J]. J Exp Bot,1997, 48:451-458.
[5]LI W H, XU G H, ALLI A, et al. Plant KT/HAK/KUP K+ transporters: function and regulation[J]. Seminars in Cell and Developmental Biology, 2018, 74:133-141.
[6]SANTA-MARIA G E, RUBIO F, DUBCOVSKY J, et al. The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter[J]. Plant Cell, 1997, 9(12): 2281-2289.
[7]GUPTA M, QIU X, WANG L, et al. KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa) [J]. Molecular Genetics and Genomics, 2008, 280(5): 437-452.
[8]吴胜男, 杨 媛, 李英壮, 等. 小麦KUP/HAK/KT基因家族的全基因组鉴定、系统进化和表达模式分析[J]. 西北农业学报, 2021, 30(3): 351-364.
[9]ZHANG Z, ZHANG J, CHEN Y, et al. Genome-wide analysis and identification of HAK potassium transporter gene family in maize (Zea mays L.) [J]. Molecular Biology Reports, 2012, 39(8): 8465-8473.
[10]晁毛妮,温青玉,张晋玉,等. 大豆KUP/HAK/KT钾转运体基因家族的鉴定与表达分析[J]. 西北植物学报, 2017, 37(2): 239-249.
[11]许赛赛,张博,仲阳,等. 马铃薯HAK/KUP/KT基因家族鉴定与表达分析[J].分子植物育种, 2021, 19(12): 3878-3886.
[12]朱乐,赵鑫泽,蒋立希. 甘蓝型油菜钾离子转运载体HAK/KUP/KT家族的全基因组鉴定与分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 303-313.
[13]OU W, MAO X, HUANG C, et al. Genome-wide identification and expression analysis of the KUP family under abiotic stress in Cassava (Manihot esculenta Crantz) [J]. Front Physiol, 2018, 9: 17.
[14]HYUN T K, RIM Y, KIM E, et al. Genome-wide and molecular evolution analyses of the KT/HAK/KUP family in tomato (Solanum lycopersicum L.) [J]. Genes & Genomics, 2014, 36(3): 365-374.
[15]MARTINEZ-CORDERO M A, MARTINEZ V, RUBIO F. Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper[J]. Plant Mol Biol, 2004, 56(3): 413-421.
[16]WANG Y Z, LV J H, CHEN D, et al. Genome-wide identification, evolution, and expression analysis of the KT/HAK/KUP family in pear[J]. Genome, 2018, 61(10): 755-765.
[17]赵建荣,杨圆,秦改花,等. 石榴HAK/KUP/KT家族基因鉴定及钾转运功能分析[J].园艺学报, 2022, 49(4): 758-768.
[18]金龙飞,张安妮,滕梦鑫,等. 香蕉钾转运体HAK/KUP/KT家族鉴定及其在果实发育和低钾胁迫下的表达分析[J].江苏农业科学, 2022, 50(2): 30-36.
[19]RUBIO F, GUILLERMO E S, ALONSO R N. Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells[J]. Physiologia Plantarum, 2010, 109(1): 34-43.
[20]GOMEZ-PORRAS J L, RIAO-PACHóN D M, BENITO B, et al. Phylogenetic analysis of K+ transporters in bryophytes, lycophytes, and flowering plants indicates a specialization of vascular plants[J]. Frontiers in Plant Science, 2012, 3:167.
[21]柴薇薇,王文颖,崔彦农,等. 植物钾转运蛋白KUP/HAK/KT家族研究进展[J]. 植物生理学报, 2019, 55(12):1747-1761.
[22]GIERTH M, SCHROEDER P M I. The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel con to K+ uptake kontributiinetics in Arabidopsis roots[J]. Plant Physiology, 2005, 137(3):1105-1114.
[23]QI Z, HAMPTON C R, RYOUNG S, et al. The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis[J]. Journal of Experimental Botany, 2008, 59(3): 595-607.
[24]RIGAS S, DITENGOU F A, LJUNG K, et al. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex[J]. New Phytologist, 2012, 197(4): 1130-1141.
[25]孙小川,段伟科,黄志楠,等. 萝卜DHN基因家族的鉴定及表达模式分析[J/OL].分子植物育种,2022:1-8
[2022-08-05]. https://kns.cnki.net/kcms/detail/46.1068.S.20210922.1446.005.html.
[26]KITASHIBA H, LI F, HIRAKAWA H, et al. Draft sequences of the radish (Raphanus sativus L.) genome[J]. DNA Res, 2014, 21(5): 481-490.
[27]MITSUI Y, SHIMOMURA M, KOMATSU K, et al. The radish genome and comprehensive gene expression profile of tuberous root formation and development[J]. Sci Rep, 2015, 5(1):1-14.
[28]JEONG Y M, KIM N, AHN B O, et al. Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes[J]. Theor Appl Genet, 2016, 129(7):1357-1372.
[29]BAILEY T L, WILLIAMS N, MISLEH C, et al. MEME: discovering and analyzing DNA and protein sequence motifs[J]. Nucleic Acids Res, 2006, 34:369-373.
[30]CHEN C, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8):1194-1202.
[31]HU B, JIN J P, GUO A Y, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297.
[32]HIGO K, UGAWA Y, IWAMOTO M, et al. Plant cis-acting regulatory DNA elements (PLACE) database[J]. Nucleic Acids Res, 1999, 27(1): 297-300.
[33]WANG Y P, TANG H B, DEBARRY J D, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Res, 2012, 40(7): e49.
[34]QIAO X, LI M, LI L T, et al. Genome-wide identification and comparative analysis of the heat shock transcription factor family in Chinese white pear (Pyrus bretschneideri) and five other Rosaceae species[J]. BMC Plant Biol, 2015, 15:12.
[35]NEI M, GOJOBORI T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions[J]. Mol Biol Evol, 1986, 3(5): 418-426.
[36]SHUANG H, CHEN L S, JIANG H X, et al. Boron deficiency growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedling[J]. Journal of Plant Physiology, 2008, 165(13):1331-1341.
[37]SONG Z Z, MA R J, YU M L. Genome-wide analysis and identification of KT/HAK/KUP potassium transporter gene family in peach (Prunus persica) [J]. Genet Mol Res, 2015, 14(1): 774-787.
[38]NIEVES-CORDONES M, RODENAS R, CHAVANIEU A, et al. Uneven HAK/KUP/KT protein diversity among angiosperms: species distribution and perspectives[J]. Front Plant Sci, 2016, 7:126.
[39]ELUMALAI R P, NAGPAL P, REED J W. A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion[J]. Plant Cell, 2002, 14:119-131.
[40]RIGAS S, DEBROSSES G, HARALAMPIDIS K, et al. TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs[J]. Plant Cell, 2001, 13:139-151.
[41]MAATHUIS F J. The role of monovalent cation transporters in plant responses to salinity[J]. J Exp Bot, 2006, 57:1137-1147.
[42]WESTERMANN D T. Soil nutrient bioavailability: a mechanistic approach[J]. Soil Sci, 1996, 161(2): 140-141.
[43]王瑜,刘扬,卓座品,等. 高氮低磷中钾配比对武夷岩茶产量及品质的影响[J].南方农业学报,2022,53(2):391-400.
[44]OSAKABE Y, ARINAGA N, UMEZAWA T, et al. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis[J]. Plant Cell, 2013, 25(2): 609-624.
[45]KIM E J, KWAK J M, UOZUMI N, et al. AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity[J]. Plant Cell, 1998, 10(1):51-62.
相似文献/References:
[1]许园园,刘哲,娄丽娜,等.基于 MCID 法的萝卜品种快速鉴定[J].江苏农业学报,2016,(06):1384.[doi:doi:10.3969/j.issn.1000-4440.2016.06.029]
XU Yuan-yuan,LIU Zhe,LOU Li-na,et al.Rapid identification of radish varieties based on MCID method[J].,2016,(03):1384.[doi:doi:10.3969/j.issn.1000-4440.2016.06.029]
[2]李芳,徐良,魏美甜,等.萝卜 IRAP 技术体系建立与品种指纹图谱构建[J].江苏农业学报,2015,(01):143.[doi:10.3969/j.issn.1000-4440.2015.01.023]
LI Fang,XU Liang,WEI Mei-tian,et al.Establishment of inter-retrotransposon amplified polymorphism(IRAP) reaction system and construction of cultivar fingerprint in radish (Raphanus sativus L.)[J].,2015,(03):143.[doi:10.3969/j.issn.1000-4440.2015.01.023]
[3]娄丽娜,刘哲,许园园,等.萝卜与芜菁异源三倍体杂种的获得及鉴定[J].江苏农业学报,2017,(04):881.[doi:doi:10.3969/j.issn.1000-4440.2017.04.024]
LOU Li-na,LIU Zhe,XU Yuan-yuan,et al.Production and identification of an allotriploid hybrid of radish (Raphanus sativus L.)× turnip (Brassica rapa L. spp. rapa)[J].,2017,(03):881.[doi:doi:10.3969/j.issn.1000-4440.2017.04.024]
[4]倪萌,王娟,王爽,等.克服萝卜自交不亲和性的化学试剂筛选[J].江苏农业学报,2022,38(04):1042.[doi:doi:10.3969/j.issn.1000-4440.2022.04.022]
NI Meng,WANG Juan,WANG Shuang,et al.Screening of chemical reagents for overcoming the self-incompatibility of radish[J].,2022,38(03):1042.[doi:doi:10.3969/j.issn.1000-4440.2022.04.022]