[1]李长春,翟伟广,王春阳,等.基于Sentinel-1A影像的原阳县玉米和水稻分类时间窗选择[J].江苏农业学报,2023,(02):413-422.[doi:doi:10.3969/j.issn.1000-4440.2023.02.014]
 LI Chang-chun,ZHAI Wei-guang,WANG Chun-yang,et al.Time window selection of corn and rice classification in Yuanyang County based on Sentinel-1A image[J].,2023,(02):413-422.[doi:doi:10.3969/j.issn.1000-4440.2023.02.014]
点击复制

基于Sentinel-1A影像的原阳县玉米和水稻分类时间窗选择()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年02期
页码:
413-422
栏目:
农业信息工程
出版日期:
2023-04-30

文章信息/Info

Title:
Time window selection of corn and rice classification in Yuanyang County based on Sentinel-1A image
作者:
李长春1翟伟广1王春阳1陈伟男1吴喜芳1顾明明2
(1.河南理工大学测绘与国土信息工程学院,河南焦作454000;2.河南省有色金属地质矿产局第一地质大队,河南郑州450000)
Author(s):
LI Chang-chun1ZHAI Wei-guang1WANG Chun-yang1CHEN Wei-nan1WU Xi-fang1GU Ming-ming2
(1.School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China;2.The First Geological Brigade of Henan Province Nonferrous Metals Geology and Mineral Bureau, Zhengzhou 450000, China)
关键词:
Sentinel-1A影像玉米水稻生育期随机森林时间窗
Keywords:
Sentinel-1A imagecornricegrowth periodrandom foresttime window
分类号:
S127
DOI:
doi:10.3969/j.issn.1000-4440.2023.02.014
文献标志码:
A
摘要:
使用遥感技术可以快速、准确地识别作物类型。本研究以河南省原阳县为试验区,基于Google Earth Engine(GEE)云平台,以玉米、水稻关键生育期的Sentinel-1A影像为数据源,分析各类地物的极化特征时序曲线。对6期Sentinel-1A影像进行穷举组合,使用随机森林算法对所有影像组合分类,分析各生育期影像对作物分类的重要性,选出玉米、水稻分类最佳时间窗。结果表明,作物生长中后期影像对作物分类更重要,其中玉米的乳熟期最重要,水稻的灌浆期最重要。全生育期影像组合中玉米的用户精度和生产者精度分别为90.43%和90.53%,水稻的用户精度和生产者精度分别为88.89%和89.01%。经过优选,大喇叭口期至成熟期为玉米分类最佳时间窗,相较于全生育期影像组合,此生育期影像组合的玉米用户精度和生产者精度分别提高了3.38个百分点和5.26个百分点;拔节期至成熟期为水稻分类最佳时间窗,相较于全生育期影像组合,此生育期影像组合的水稻用户精度和生产者精度分别提高了4.73个百分点和2.66个百分点。本研究结果可以为Sentinel-1A影像在原阳县及其附近区域的玉米、水稻种植结构监测研究提供理论依据。
Abstract:
The use of remote sensing technology can quickly and accurately identify crop types. Taking Yuanyang County of Henan province as the research area, based on Google Earth Engine (GEE) cloud platform and Sentinel-1A images of corn and rice at the key growth period, the polarization characteristic time series curves of various ground objects were analyzed. The six Sentinel-1A images were combined exhaustively, and the random forest algorithm was used to classify all image combinations, analyze the importance of images in each growth period to crop classification, and select the best time window for corn and rice classification. The results showed that the image of the middle and late growth stages of crop growth was more important for classification. The milk ripening stage of maize was the most important, and the filling stage of rice was the most important. In the whole growth period image combination, the user accuracy and producer accuracy of corn were 90.43% and 90.53% respectively, and the user accuracy and producer accuracy of rice were 88.89% and 89.01% respectively. After optimization, the best time window for maize classification was from big bell stage to mature stage. Compared with the image combination in the whole growth stage, the user accuracy and producer accuracy of maize improved by 3.38 percentage points and 5.26 percentage points, respectively. The best time window for rice classification was from jointing stage to maturity stage. Compared with the image combination in the whole growth stage, the user accuracy and producer accuracy of rice increased by 4.73 percentage points and 2.66 percentage points, respectively. The results of this study can provide a theoretical basis for the monitoring and research of corn and rice planting structure in Yuanyang County and its nearby areas with Sentinel-1A image.

参考文献/References:

[1]谢登峰,张锦水,潘耀忠,等. Landsat 8和MODIS融合构建高时空分辨率数据识别秋粮作物[J]. 遥感学报, 2015, 19(5): 791-805.
[2]宋宏利,雷海梅,尚明. 基于Sentinel2A/B时序数据的黑龙港流域主要农作物分类[J]. 江苏农业学报, 2021, 37(1): 83-92.
[3]DONG Q, CHEN X, CHEN J, et al. Mapping winter wheat in north China using sentinel 2A/B data: a method based on phenology-time weighted dynamic time warping[J]. Remote Sensing, 2020, 12(8):1274.
[4]李卫国. 作物旱涝灾情遥感监测进展与思考[J]. 江苏农业学报, 2013, 29(6): 1503-1506.
[5]王庆林,李卫国,王荣富. 基于不同时相遥感的冬小麦种植面积的提取[J]. 江苏农业学报, 2014, 30(6): 1286-1291.
[6]ZHONG L, HU L, ZHOU H. Deep learning based multi-temporal crop classification[J]. Remote Sensing of Environment, 2019, 221: 430-443.
[7]XU F, LI Z, ZHANG S, et al. Mapping winter wheat with combinations of temporally aggregated sentinel-2 and Landsat-8 data in Shandong province, China[J]. Remote Sensing, 2020, 12(12):2065.
[8]吴静,吕玉娜,李纯斌,等. 基于多时相Sentinel-2A的县域农作物分类[J]. 农业机械学报, 2019, 50(9): 194-200.
[9]蔡耀通,刘书彤,林辉,等. 基于多源遥感数据的CNN水稻提取研究[J]. 国土资源遥感, 2020, 32(4): 97-104.
[10]白燕英,高聚林,张宝林. 基于Landsat8影像时间序列NDVI的作物种植结构提取[J]. 干旱区地理, 2019, 42(4): 893-901.
[11]LIU C, SHANG J, VACHON P, et al. Multiyear crop monitoring using polarimetric RADARSAT-2 data.[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013,51 (4): 2227-2240.
[12]周涛,潘剑君,韩涛,等. 基于多时相合成孔径雷达与光学影像的冬小麦种植面积提取[J]. 农业工程学报, 2017, 33(10): 215-221.
[13]王迪,周清波,陈仲新,等. 基于合成孔径雷达的农作物识别研究进展[J]. 农业工程学报, 2014, 30(16): 203-212.
[14]SKAKUN S, KUSSUL N, SHELESTOV A Y, et al. Efficiency assessment of multitemporal C-band Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in Ukraine[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(8): 3712-3719.
[15]郭交,朱琳,靳标. 基于Sentinel-1和Sentinel-2数据融合的农作物分类[J].农业机械学报,2018,49(4):192-198.
[16]TORRES R, SNOEIJ P, GEUDTNER D, et al. GMES sentinel-1 mission[J]. Remote Sensing of Environment, 2012, 120: 9-24.
[17]李俐,孔庆玲,王鹏新,等. 基于时间序列Sentinel-1 A数据的玉米种植面积监测研究[J]. 资源科学, 2018,40(8): 1608-1621.
[18]刘警鉴,李洪忠,华璀,等 .基于Sentinel-1A数据的临高县早稻面积提取[J]. 国土资源遥感, 2020, 32(1): 191-199.
[19]FRATE F D, SCHIAVON G, SOLIMINI D, et al. Crop classification using multiconfiguration C-band SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7): 1611-1619.
[20]ZEYADA H, EZZ M M, NASR A H, et al. Evaluation of the discrimination capability of full polarimetric SAR data for crop classification[J]. International Journal of Remote Sensing, 2016, 37(11): 2585-2603.
[21]KUSSUL N, LAVRENIUK M, SKAKUN S, et al. Deep learning classification of land cover and crop types using remote sensing data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 778-782.
[22]KUMAR L, MUTANGA O. Google earth engine applications since inception: usage, trends, and potential[J]. Remote Sensing, 2018, 10(10): 1509.
[23]PHAN T N, KUCH V, LEHNERT L W. Land cover classification using Google Earth Engine and random forest classifier——the role of image composition[J]. Remote Sensing, 2020, 12(15): 2411.
[24]SMALL D. Flattening gamma: radiometric terrain correction for SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3081-3093.
[25]ALCANTARA C, KUEMMERLE T, PRISHCHEPOV A V, et al. Mapping abandoned agriculture with multi-temporal MODIS satellite data[J]. Remote Sensing of Environment, 2012, 124: 334-347.
[26]胡琼,吴文斌,宋茜,等. 农作物种植结构遥感提取研究进展[J]. 中国农业科学, 2015, 48(10): 1900-1914.
[27]SRIKANTH P, RAMANA K V, DEEPIKA U, et al. Comparison of various polarimetric decomposition techniques for crop classification[J]. Journal of the Indian Society of Remote Sensing, 2016, 44(4): 635-642.
[28]LAWRENCE R L, WOOD S D, SHELEY R L. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest)[J]. Remote Sensing of Environment, 2006, 100(3): 356-362.
[29]李彬彬,谢欢,童小华,等. 基于随机森林的ICESat-2卫星数据地表覆盖分类[J]. 红外与激光工程, 2020, 49(11): 115-121.
[30]刘毅,杜培军,郑辉,等. 基于随机森林的国产小卫星遥感影像分类研究[J]. 测绘科学, 2012, 37(4): 194-196.
[31]LOOSVELT L, PETERS J, SKRIVER H, et al. Random forests as a tool for estimating uncertainty at pixel-level in SAR image classification[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 19: 173-184.
[32]郭群佐,邓荣鑫,魏义长,等. 河南省原阳县引黄灌区水稻田信息提取研究[J]. 湿地科学, 2021, 19(1): 40-46.
[33]马战林,刘昌华,薛华柱,等. GEE环境下融合主被动遥感数据的冬小麦识别技术[J]. 农业机械学报, 2021, 52(9): 195-205.

相似文献/References:

[1]宝华宾,梁帅强,吕远大,等.玉米籽粒蛋白含量Meta-QTL及候选基因分析[J].江苏农业学报,2016,(04):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
 BAO Hua-bin,LIANG Shuai-qiang,LYU Yuan- da,et al.Analysis of meta-QTL and candidate genes related to protein concentration in maize grain[J].,2016,(02):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
[2]印志同,秦秋霞,阚欣,等.玉米快速叶绿素荧光参数全基因组关联分析[J].江苏农业学报,2016,(04):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
 YIN Zhi-tong,QIN Qiu-xia,KAN Xin,et al.Genome-wide association analysis of fast chlorophyll fluorescence parameters in maize[J].,2016,(02):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
[3]岳海旺,陈淑萍,彭海成,等.玉米籽粒灌浆特性品种间比较[J].江苏农业学报,2016,(05):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
 YUE Hai-wang,CHEN Shu-ping,PENG Hai-cheng,et al.Grain filling characteristics in maize materials[J].,2016,(02):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
[4]周玲,梁帅强,林峰,等.玉米二态性 InDel 位点的鉴定和分子标记开发[J].江苏农业学报,2016,(06):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
 ZHOU Ling,LIANG Shuai-qiang,LIN Feng,et al.Biallelic InDel loci detection and molecular marker development in maize[J].,2016,(02):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
[5]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
 LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[6]江彬,毕银丽,申慧慧,等.氮营养与AM真菌协同对玉米生长及土壤肥力的影响[J].江苏农业学报,2017,(02):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
 JIANG Bin,BI Yin-li,SHEN Hui-hui,et al.Synergetic effects of Arbuscular mycorrhizal fungus and nitrogen on maize growth and soil fertility[J].,2017,(02):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
[7]李国锋,葛敏,吕远大.Opaque2转录因子对玉米α-醇溶蛋白基因家族成员表达的影响[J].江苏农业学报,2015,(06):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
 LI Guo-feng,GE Min,L Yuan-da.Differential expression of α-zein family genes regulated by Opaque2 transcription factor[J].,2015,(02):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
[8]管莉,张阿英.CaM 与 ZmCCaMK 相互作用参与 BR 诱导的玉米叶片抗氧化防护[J].江苏农业学报,2015,(01):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
 GUAN Li,ZHANG A-ying.CaM-ZmCCaMK interaction involved in brassinosteroid-induced antioxidant defense in leaves of maize[J].,2015,(02):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
[9]王元琮,何冰,林峰,等.调控玉米阻止授粉后叶片衰老的QTL定位[J].江苏农业学报,2017,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
 WANG Yuan-cong,HE Bing,LIN Feng,et al.QTL mapping for pollination-prevention on leaf senescence[J].,2017,(02):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
[10]田礼欣,李丽杰,刘旋,等.外源海藻糖对盐胁迫下玉米幼苗根系生长及生理特性的影响[J].江苏农业学报,2017,(04):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
 TIAN Li-xin,LI Li-jie,LIU Xuan,et al.Root growth and physiological characteristics of salt-stressed maize seedlings in response to exogenous trehalose[J].,2017,(02):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]

备注/Memo

备注/Memo:
收稿日期:2022-04-28 基金项目:国家自然科学基金项目(41871333);河南省科技攻关项目(212102110238、222102110038)作者简介:李长春(1976-),男,河南周口人,博士,教授,主要从事农业定量遥感研究。(E-mail)lichangchun610@126.com 通讯作者:翟伟广,(E-mail)zwg170607@163.com
更新日期/Last Update: 2023-05-12