[1]仇逊超,张春越,张怡卓,等.流形学习在红松籽仁蛋白质含量近红外检测中的应用[J].江苏农业学报,2023,(01):246-254.[doi:doi:10.3969/j.issn.1000-4440.2023.01.028]
 QIU Xun-chao,ZHANG Chun-yue,ZHANG Yi-zhuo,et al.Application of manifold learning in quantitative detection of protein in Korean pine seed kernels using near-infrared quantitative detection[J].,2023,(01):246-254.[doi:doi:10.3969/j.issn.1000-4440.2023.01.028]
点击复制

流形学习在红松籽仁蛋白质含量近红外检测中的应用()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年01期
页码:
246-254
栏目:
加工贮藏·质量安全
出版日期:
2023-02-28

文章信息/Info

Title:
Application of manifold learning in quantitative detection of protein in Korean pine seed kernels using near-infrared quantitative detection
作者:
仇逊超12张春越1张怡卓2曹军2
(1.哈尔滨金融学院计算机系,黑龙江哈尔滨150030;2.东北林业大学机电工程学院,黑龙江哈尔滨150040)
Author(s):
QIU Xun-chao12ZHANG Chun-yue1ZHANG Yi-zhuo2CAO Jun2
(1.Department of Computer Engineering, Harbin Finance University, Harbin 150030, China;2.College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China)
关键词:
红松籽仁蛋白质流形学习近红外光谱
Keywords:
Korean pine seed kernelproteinmanifold learningnear-infrared spectroscopy
分类号:
TS255.6
DOI:
doi:10.3969/j.issn.1000-4440.2023.01.028
文献标志码:
A
摘要:
为研究检测红松籽仁蛋白质含量的近红外光谱分析技术,在用变量标准化校正+一阶导数+小波变换对原始光谱进行预处理的基础上,分别运用主成分分析、改进型局部线性嵌入、局部切空间对齐、黑塞特征映射进行光谱数据的降维处理,分别构建偏最小二乘、岭回归、支持向量回归、极度梯度提升数学模型。结果表明,改进型局部线性嵌入+支持向量回归法建立的参数优化模型质量最佳。其降维方法优化参数为:维度取4,邻域数取50;验证集均方差均值为0.568 1,验证集皮尔逊相关系数均值达0.940 8。可见,模型的预测结果是可靠的,能够实现对红松籽仁蛋白质含量的无损、准确检测。
Abstract:
To study the near-infrared spectroscopy for protein content detection in Korean pine seed kernels, principal components analysis (PCA), modified locally linear embedding (MLLE), local tangent space alignment (LTSA) and Hessian based locally linear embedding (HLLE) were used separately to reduce dimensions of the spectroscopic data, based on pretreatment of the original spectrum by standard normalized variate (SNV)+first derivative (1st-Der)+Symlet4 (SNV+1st-Der+Sym4) method. Partial least square (PLS), ridge regression (Ridge), support vector regression (SVR) and extreme gradient boosting (XGBoost) were adopted separately to establish mathematical models. The results showed that, the quality of the parameter optimization model established by MLLE+SVR method was the best. The optimized parameters for dimension reducing were as follows: the dimension (n-components) was four, the neighborhood number (n-neighbors) was 50, the mean value of mean squared error of validation (mean-MSEV) was 0.568 1, and the mean value of Pearson correlation coefficient of validation (mean-PCCV) was 0.940 8. Therefore, the prediction results of the model is reliable, and non-destructive, accurate and quantitative detection of protein in Korean pine seed kernels can be realized.

参考文献/References:

[1]马文强,张漫,李忠新,等. 基于近红外光谱的核桃仁蛋白质含量检测分析[J].农业机械学报,2017,48(S1):407-411.
[2]刘洁,李小昱,王为,等. 基于近红外光谱的板栗蛋白质检测方法研究[C]//汪慰华,朱明,傅泽田,等. 中国农业工程学会2011年学术年会论文集. 重庆:中国农业工程学会,2011:1653-1656.
[3]汪庆平,黎其万,董宝生,等. 近红外光谱法快速测定山核桃品质性状的研究[J].西南农业学报,2009,22(3):873-875.
[4]蒋大鹏,张冬妍,李丹丹,等. 基于近红外的松子蛋白质品质分类处理[J].计算技术与自动化,2018,37(3):180-184.
[5]仇逊超,曹军. 近红外光谱波段优化在东北松子蛋白质定量检测中的应用[J].现代食品科技,2016,32(11):303-309.
[6]刘丽娜,马世伟,芮玲. 基于可信赖性和连续性的流形降维效果评价方法[J].计算机应用研究,2018,35(6):1707-1711.
[7]黄建军,李雪梅,滕宏泉. 基于偏最小二乘法的黄土湿陷性评价模型[J].灾害学,2021,36(2):60-64.
[8]赵思梦,于宏威,高冠勇,等. 花生蛋白组分及其亚基含量近红外分析检测方法[J].光谱学与光谱分析,2021,41(3):912-917.
[9]方彦,王汉宁. 近红外光谱法在玉米粗蛋白含量测定研究中的应用[J].甘肃农业大学学报,2004,39(1):32-35.
[10]邵学广,宁宇,刘凤霞,等. 近红外光谱在无机微量成分分析中的应用[J].化学学报,2012,70(20):2190-2114.
[11]王培培,张德全,陈丽,等. 近红外光谱法预测羊肉化学成分的研究[J].核农学报,2012,26(3):500-504.
[12]TSENKOVA R, KOVACS Z, KUBOTA Y. Aquaphotomics: near infrared spectroscopy and water states in biological systems[J]. Subcell Biochem,2015,71:189-210.
[13]曹璞,潘涛,陈星旦. 小型近红外玉米蛋白质成分分析仪器设计的波段选择[J].光学精密工程,2007,15(12):1952-1958.
[14]TSUCHIKAWA S, KOBORI H. A review of recent application of near infrared spectroscopy to wood science and technology[J]. Journal of Wood Science,2015,61(3):213-220.
[15]张怡卓,苏耀文,李超,等. 蒙古栎抗弯弹性模量多模型共识的近红外检测方法[J].林业工程学报,2016,1(6):17-22.
[16]张银,周孟然. 然近红外光谱分析技术的数据处理方法[J].红外技术,2007,29(6):345-348.
[17]TIAN H, LI M, WANG Y, et al. Optical wavelength selection for portable hemoglobin determination by near-infrared spectroscopy method[J]. Infrared Physics and Technology, 2017,86:98-102.
[18]CORTES V, RODRIGUEZ A, BLASCO J, et al.Prediction of the level of astringency in persimmon using visible and near-infrared spectroscopy[J]. Journal of Food Engineering,2017,204(7):27-37.
[19]张素兰,黄金龙,秦林,等. 基于高光谱特征的松材线虫岭回归估测模型研究[J].农业机械学报,2019,50(4):196-202.
[20]沈广辉,曹瑶瑶,刘馨,等. 近红外高光谱成像结合特征波长筛选识别小麦赤霉病瘪粒[J].江苏农业学报,2021,37(2):509-516.
[21]曹立源,范勤勤,黄敬英. 基于特征选择和XGBoost优化的术中低体温预测[J].数据采集与处理,2022,37(1):134-146.
[22]LOPEZ E, GONZALEZ D, AGUADO J V, et al. A manifold learning approach for integrated computational materials engineering[J]. Archives of Computational Methods in Engineering, 2018,25(1):59-68.

相似文献/References:

[1]杨万君,周轶亭,周光宏,等.贮藏时间对酱排骨蛋白质体外消化率和风味的影响[J].江苏农业学报,2017,(06):1386.[doi:doi:10.3969/j.issn.1000-4440.2017.06.027]
 YANG Wan-jun,ZHOU Yi-ting,ZHOU Guang-hong,et al.Effects of storage time on in vitro digestion of protein and volatile flavor in sauced ribs[J].,2017,(01):1386.[doi:doi:10.3969/j.issn.1000-4440.2017.06.027]
[2]路凯,赵庆勇,周丽慧,等.稻米蛋白质含量与食味品质的关系及其影响因素研究进展[J].江苏农业学报,2020,(05):1305.[doi:doi:10.3969/j.issn.1000-4440.2020.05.030]
 LU Kai,ZHAO Qing-yong,ZHOU Li-hui,et al.Research progress on the relationship between rice protein content and eating quality and the influence factors[J].,2020,(01):1305.[doi:doi:10.3969/j.issn.1000-4440.2020.05.030]
[3]马秋月,王亚楠,李淑顺,等.元宝枫种子发育过程中油脂积累与可溶性糖、蛋白质之间的关系[J].江苏农业学报,2021,(04):982.[doi:doi:10.3969/j.issn.1000-4440.2021.04.022]
 MA Qiu-yue,WANG Ya-nan,LI Shu-shun,et al.The lipid accumulation and its relationship with soluble sugar and protein in Acer truncatum Bunge seeds development[J].,2021,(01):982.[doi:doi:10.3969/j.issn.1000-4440.2021.04.022]
[4]钱蕾,秦毅,张佳,等.滞育时间对豆天蛾幼虫营养成分及代谢酶活性的影响[J].江苏农业学报,2024,(01):149.[doi:doi:10.3969/j.issn.1000-4440.2024.01.016]
 QIAN Lei,QIN Yi,ZHANG Jia,et al.Effects of diapause time on nutritional components and metabolic enzymes activities in Clanis bilineata tsingtauica larvae[J].,2024,(01):149.[doi:doi:10.3969/j.issn.1000-4440.2024.01.016]

备注/Memo

备注/Memo:
收稿日期:2022-02-16基金项目:黑龙江省省属本科高校基本科研业务费项目(青年学术骨干研究项目)(2021-KYYWF-019);国家自然科学基金项目(31270757);国家林业局948项目(2015-4-25);中央高校基本科研业务费专项资金项目(2572020BK03);黑龙江省省属本科高校基本科研业务项目(科研创新团队研究项目)(2020-KYYWF-E009)作者简介:仇逊超(1986-),女,黑龙江哈尔滨人,博士,讲师,主要从事农林产品无损检测、农林业机械化工程研究。(E-mail)ldqiuxunchao@126.com
更新日期/Last Update: 2023-03-21