参考文献/References:
[1]LI W, LIU Q. Changes in fungal community and diversity in strawberry rhizosphere soil after 12 years in the greenhouse[J]. Journal of Integrative Agriculture, 2019, 18(3): 677-687.
[2]李梦雅,陈莎莎,王世梅. 连作草莓低发病土壤与高发病土壤理化性质及生物学特征差异比较[J]. 江苏农业学报, 2021, 37(4): 910-918.
[3]张运涛,雷家军,赵密珍,等. 新中国果树科学研究70年: 草莓[J]. 果树学报, 2019, 36(10): 1441-1452.
[4]宁志怨,伊兴凯,兰伟,等. 安徽省‘甜查理’草莓红叶病病原菌的分离与鉴定[J]. 分子植物育种, 2019, 17(15): 5051-5056.
[5]刘艳茹,曹莹,孙琰,等. 草莓拟盘多毛孢根腐病病原菌分离与鉴定[J]. 植物病理学报, 2022, 52(1): 104-108.
[6]赵景楠,马喆,刘正坪,等. 草莓拟盘多毛孢叶斑病的病原菌[J]. 菌物学报, 2016, 35(1): 114-120.
[7]赵宇,钱恒伟,徐鹏程,等. 青岛市草莓根腐病病原菌分离及鉴定[J]. 中国植保导刊, 2016, 36 (1): 43-46.
[8]SHI J, ZHANG X, LIU Y, et al. First report of Neopestalotiopsis clavispora causing calyx and receptacle blight on strawberry in China[J]. Plant Disease, 2022, 106(4): 1307.
[9]温浩,魏佳爽,张桂军,等. 九种杀菌剂对新拟盘多毛孢病菌的室内毒力作用[J]. 农药学学报, 2019, 21(4): 437-443.
[10]宁志怨,伊兴凯,黄锡桂,等. 甜查理草莓红叶病防治药剂筛选的研究[J]. 安徽农业科学, 2020, 48(5): 416-419.
[11]刘艳茹. 草莓拟盘根腐病病原菌鉴定及其防治药剂筛选[D]. 沈阳:沈阳农业大学, 2021.
[12]李忠峰,王磊,刘金文,等. 郑州地区草莓红斑叶枯病病原鉴定及防治药剂筛选[J]. 农业科技通讯, 2021(8): 231-235.
[13]ZHANG Y, ZHOU Q, TIAN P Y, et al. Induced expression of CYP51 associated with difenoconazole resistance in the pathogenic Alternaria sect. on potato in China[J]. Pest Management Science, 2020, 76(5): 1751-1760.
[14]方中达. 植病研究方法(第3版)[M]. 北京: 中国农业出版社, 1998: 122-125.
[15]STEFANSSON T S, WILLI Y, CROLL D, et al. An assay for quantitative virulence in Rhynchosporium commune reveals an association between effector genotype and virulence[J]. Plant Pathology, 2014, 63(2): 405-414.
[16]FRY W E. Quantification of general resistance of potato cultivars and fungicide effects for integrated control of potato late blight[J]. Phytopathology, 1978, 68(11): 1650-1655.
[17]LI Y, TSUJI S S, HU M, et al. Characterization of difenoconazole resistance in Lasiodiplodia theobromae from papaya in Brazil[J]. Pest Management Science, 2020, 76(4): 1344-1352.
[18]YANG L, ZHU W, WU E, et al. Trade-offs and evolution of thermal adaptation in the Irish potato famine pathogen phytophthora infestans[J]. Molecular Ecology, 2016, 25(16): 4047-4058.
[19]LAWRENCE I, LIN K. A concordance correlation coefficient to evaluate reproducibility[J]. Biometrics, 1989, 45(1): 255-268.
[20]ZHU W, ZHAN J, MCDONALD B A. Evidence for local adaptation and pleiotropic effects associated with melanization in a plant pathogenic fungus[J]. Fungal Genetics and Biology, 2018, 115: 33-40.
[21]DUDNEY J, WILLING C E, DAS A J, et al. Nonlinear shifts in infectious rust disease due to climate change[J]. Nature Communications, 2021, 12: 1-13.
[22]邹拓,杜琪,耿雷跃,等. 抗除草剂水稻耐药性及后代筛选方法的研究[J].江苏农业科学,2022,50(13):136-140.
[23]韩洋琳,李思思,袁文斌,等. 云南地区月季灰霉菌致病力及抗药性鉴定[J].南方农业学报,2021,52(9):2489-2497.
[24]詹家绥,吴娥娇,刘西莉,等. 植物病原真菌对几类重要单位点杀菌剂的抗药性分子机制[J]. 中国农业科学, 2014, 47(17): 3392-3404.
[25]KIKUHARA K, IIYAMA K, MATSUMOTO M, et al. First report on DMI fungicide resistance in Gymnosporangium asiaticum, the causal agent of Japanese pear rust, in Japan[J]. Journal of General Plant Pathology, 2019, 85(1): 49-56.
[26]HEICK T M, JUSTESEN A F, JRGENSEN L N. Anti-resistance strategies for fungicides against wheat pathogen Zymoseptoria tritici with focus on DMI fungicides[J]. Crop Protection, 2017, 99: 108-117.
[27]韩永超,向发云,曾祥国,等. 湖北省草莓炭疽病菌对苯醚甲环唑的敏感性测定[J]. 植物保护学报, 2016, 43(3): 525-526.
[28]史晓晶,任璐,王华杰,等. 山西省番茄早疫病菌对苯醚甲环唑的敏感性及抗性突变体的适合度[J]. 植物保护学报, 2019, 46(1): 201-207.
[29]薛德胜,邵兆浩,李保华,等. 防治蓝莓棒状拟盘多毛孢菌化学药剂的室内筛选[J]. 山东农业科学, 2018, 50(9): 115-118.
[30]WANG C, LI C, LI B, et al. Toxins produced by valsa mali var. Mali and their relationship with pathogenicity[J]. Toxins, 2014, 6(3):1139-1154
[31]谈彬. 桃褐腐病病原鉴定与多样性研究及其PG基因的克隆与表达[D]. 扬州:扬州大学, 2019.