[1]戚良轩,徐晴玉,李晶,等.灰飞虱唾液鞘形态及其蛋白质组分鉴定[J].江苏农业学报,2023,(01):30-36.[doi:doi:10.3969/j.issn.1000-4440.2023.01.004]
 QI Liang-xuan,XU Qing-yu,LI Jing,et al.Morphology and protein identification of salivary sheath from Laodelphax striatellus[J].,2023,(01):30-36.[doi:doi:10.3969/j.issn.1000-4440.2023.01.004]
点击复制

灰飞虱唾液鞘形态及其蛋白质组分鉴定()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年01期
页码:
30-36
栏目:
植物保护
出版日期:
2023-02-28

文章信息/Info

Title:
Morphology and protein identification of salivary sheath from Laodelphax striatellus
作者:
戚良轩1徐晴玉1李晶1鞠佳菲1孙洋2方继朝13纪锐123
(1.江苏省农业科学院植物保护研究所,江苏南京210014;2.安徽师范大学生命科学学院/安徽省重要生物资源保护与利用研究重点实验室,安徽芜湖241000;3.淮阴师范学院/江苏省区域现代农业与环境保护协同创新中心,江苏淮安223300)
Author(s):
QI Liang-xuan1XU Qing-yu1LI Jing1JU Jia-fei1SUN Yang2FANG Ji-chao13JI Rui123
(1.Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province/College of Life Sciences, Anhui Normal University, Wuhu 241000, China;3.Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Huaiyin Normal University, Huai′an 223300, China)
关键词:
灰飞虱唾液鞘蛋白质组分
Keywords:
Laodelphax striatellussalivary sheathprotein component
分类号:
S435.112
DOI:
doi:10.3969/j.issn.1000-4440.2023.01.004
文献标志码:
A
摘要:
灰飞虱是一种小型的刺吸式口器昆虫,是危害水稻的主要害虫之一。灰飞虱刺吸取食时分泌的胶状唾液可形成唾液鞘,保护口针并帮助取食,同时其中的蛋白质效应子在调控作物免疫中扮演重要角色。本研究利用扫描电子显微镜观察了灰飞虱唾液鞘的形态:多呈树枝状,表面为较为光滑的珠状结构。应用双层膜装置收集了若虫的唾液鞘,经液相色谱与串联质谱联用检测鉴定得到42种灰飞虱唾液鞘蛋白质,其中19种蛋白质检测到2个及以上的唯一肽段。进一步分析了编码这19种蛋白质的基因在各个组织中的表达模式,发现其中8个基因在唾液腺中明显高表达,推测其可能参与了唾液鞘的形成以及害虫-作物的互作。唾液鞘蛋白质组分鉴定为后续筛选和研究灰飞虱效应子功能提供了基础,有助于明确灰飞虱-水稻互作的分子机制,为开发害虫绿色防控新策略提供思路。
Abstract:
Small brown planthopper (SBPH) Laodelphax striatellus, the tinny sap-sucking insects, is one of the most destructive herbivores damaging rice in China. During the feeding process, gel saliva secreted by SBPHs can form the salivary sheath to protect stylet and help feeding. Some protein effectors in the salivary sheath play important roles in regulating plant immunity. Here, we observed the morphology of SBPH salivary sheaths under scanning electron microscope: most salivary sheaths were dendritic and had smooth bead structures in the surface. The salivary sheaths of SBPH nymphs were collected using double membrane device. After the liquid chromatography-tandem mass spectrometer (LC-MS/MS)analysis, 42 proteins were finally identified in the salivary sheaths, and among them, 19 proteins with two or more unique peptides were detected. Using quantitative polymerase chain reaction, we analyzed the expression patterns of genes encoding these 19 proteins in different tissues of SBPH, and found eight genes with dramatically higher expression levels in the salivary gland, suggesting their importance in the formation of salivary sheaths and interaction of insect and plant. These results lay a solid foundation for studying the function of SBPH salivary sheath, revealing the detailed mechanism of SBPH-rice interaction, and developing green pest management strategies.

参考文献/References:

[1]董玉妹,张美倩,沈慧,等. 植食性昆虫唾液效应子和激发子的研究进展[J]. 昆虫学报, 2021, 64(8): 982-997.
[2]COHEN C A. Extra-oral digestion in predaceous terrestrial arthropoda[J]. Annual Review of Entomology,1995, 40: 85-103.
[3]JI R, YE W F, CHEN H D, et al. A salivary endo-β-1, 4-glucanase acts as an effector that enables the brown planthopper to feed on rice[J]. Plant Physiology, 2017, 173:1920-1932.
[4]HUANG H J, CUI J R, XIA X, et al. Salivary DNase II from Laodelphax striatellus acts as an effector that suppresses plant defence[J]. New Phytologist ,2019,224(2): 860-874.
[5]FU J M, SHI Y, WANG L H, et al. Planthopper-secreted salivary calmodulin acts as an effector for defense responses in rice[J]. Frontiers in Plant Science, 2022,13: 841378.
[6]TIAN T, JI R, FU J M, et al. A salivary calcium-binding protein from Laodelphax striatellus acts as an effector that suppresses defense in rice[J]. Pest Management Science,2021, 77(5):2272-2281.
[7]YE W F, YU H X, JIAN Y K, et al. A salivary EF-hand calcium-binding protein of the brown planthopper Nilaparvata lugens functions as an effector for defense responses in rice[J]. Scientific Reports,2017,7: 40498.
[8]JI R, FU J M, SHI Y, et al. Vitellogenin from planthopper oral secretion acts as a novel effector to impair plant defenses[J]. New Phytologist,2021, 232: 802-817.
[9]WANG N, ZHAO P Z, MA Y H, et al. A whitefly effector Bsp9 targets host immunity regulator WRKY33 to promote performance[J]. Philosophical Transactions of the Royal Society B,2019, 374(1767): 20180313
[10]XU H X, QIAN L X, WANG X W, et al. A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway[J]. Proceedings of the National Academy of Sciences,2019,116(2): 490-495.
[11]DU H, XU H X, WANG F, et al. Armet from whitefly saliva acts as an effector to suppress plant defenses by targeting tobacco cystatin[J]. New Phytologist,2022, 234(5):1848-1862.
[12]HUANG H J, LIU C W, HUANG X H, et al. Screening and functional analyses of Nilaparvata lugens salivary proteome[J]. Journal of Proteome Research, 2016, 15:1883.
[13]SGAWA K. The rice brown planthopper: feeding physiology and host plant interactions[J]. Annual Review of Entomology, 2003, 27(1):49-73.
[14]HUANG H J, LIU C W, CAI Y F, et al. A salivary sheath protein essential for the interaction of the brown planthopper with rice plants[J]. Insect Biochemistry and Molecular Biology, 2015, 66: 77-87.
[15]SHANGGUAN X X, ZHANG J, LIU B F, et al. A mucin-like protein of planthopper is required for feeding and induces immunity response in plants[J]. Plant Physiology, 2018,176(1): 552-565.
[16]HUO Y, ZHAO J, MENG X Y, et al. Laodelphax striatellus saliva mucin enables the formation of stylet sheathes to facilitate its feeding and rice stripe virus transmission [J]. Pest Management Science, 2022,78(8):3498-3507.
[17]鞠佳菲,孙洋,刘宝生,等. 一种制备稻飞虱唾液鞘扫描电镜样品的方法:ZL201811514920.X[P]. 2021-06-01.
[18]HUANG H J, LU J B, LI Q, et al. Combined transcriptomic/proteomic analysis of salivary gland and secreted saliva in three planthopper species[J]. Journal of Proteomics, 2018, 172: 25-35.

相似文献/References:

[1]张青,陆明星,祝树德.灰飞虱2种热激蛋白基因Hsp70的克隆、分析[J].江苏农业学报,2015,(06):1257.[doi:doi:10.3969/j.issn.1000-4440.2015.06.010]
 ZHANG Qing,LU Ming-xing,ZHU Shu-de.Cloning,sequence analysis and expression profiling of two heat shock protein 70 genes in small brown plant hopper,Laodelphax striatellus (Hemiptera:Delphacidae)[J].,2015,(01):1257.[doi:doi:10.3969/j.issn.1000-4440.2015.06.010]
[2]张梦龙,岳红亮,程新杰,等.水稻条纹叶枯病抗性机制研究进展[J].江苏农业学报,2021,(06):1608.[doi:doi:10.3969/j.issn.1000-4440.2021.05.031]
 ZHANG Meng-long,YUE Hong-liang,CHENG Xin-jie,et al.Research progress on resistance mechanism of rice stripe disease[J].,2021,(01):1608.[doi:doi:10.3969/j.issn.1000-4440.2021.05.031]
[3]王利华,张玉,郑州廷,等.灰飞虱脂肪酶LsLPS的原核表达及Ni-NTA纯化[J].江苏农业学报,2022,38(03):611.[doi:doi:10.3969/j.issn.1000-4440.2022.03.005]
 WANG Li-hua,ZHANG Yu,ZHENG Zhou-ting,et al.Prokaryotic expression and Ni-NTA purification of lipase LsLPS from Laodelphax striatellus[J].,2022,38(01):611.[doi:doi:10.3969/j.issn.1000-4440.2022.03.005]

备注/Memo

备注/Memo:
收稿日期:2022-09-26基金项目:国家自然科学基金面上项目(31871965);“十四五”国家重点研发计划项目( 2021YFD1401100);江苏省农业科技自主创新基金项目[CX(22)3018]作者简介:戚良轩(1993-),男,安徽铜陵人,博士,助理研究员,主要从事作物与害虫互作研究,(E-mail)470724564@qq.com。徐晴玉为共同第一作者。通讯作者:纪锐,(E-mail)jirui@jaas.ac.cn;方继朝,(E-mail)fangjc@jaas.ac.cn
更新日期/Last Update: 2023-03-21