[1]肖慎华,阿得力江·吾斯曼,刘振广.PLGA纳米疫苗佐剂的研究进展[J].江苏农业学报,2022,38(06):1715-1721.[doi:doi:10.3969/j.issn.1000-4440.2022.06.031]
 XIAO Shen-hua,WUSIMAN Adelijiang,LIU Zhen-guang.Research progress of PLGA nano vaccine adjuvant[J].,2022,38(06):1715-1721.[doi:doi:10.3969/j.issn.1000-4440.2022.06.031]
点击复制

PLGA纳米疫苗佐剂的研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年06期
页码:
1715-1721
栏目:
综述
出版日期:
2022-12-31

文章信息/Info

Title:
Research progress of PLGA nano vaccine adjuvant
作者:
肖慎华1阿得力江·吾斯曼23刘振广2
(1.南京农业大学动物科技学院,江苏南京210095;2.南京农业大学动物医学院,江苏南京210095;3.新疆农业大学动物医学学院,新疆乌鲁木齐830052)
Author(s):
XIAO Shen-hua1WUSIMAN Adelijiang23LIU Zhen-guang2
(1. College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;2.College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;3.College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China)
关键词:
聚乳酸-羟基乙酸共聚物佐剂纳米材料
Keywords:
poly(DL-lactic-co-glycolic acid)adjuvantnanomaterials
分类号:
S853.73
DOI:
doi:10.3969/j.issn.1000-4440.2022.06.031
文献标志码:
A
摘要:
聚乳酸-羟基乙酸共聚物[poly(D,L-lactic-co-glycolic acid),PLGA]也称聚乙丙交酯,是由单体乳酸(LA)和羟基乙酸(GA)在催化剂的作用下化学合成的具有生物相容性及生物可降解性的高分子聚合物。PLGA具有药物控释和缓释、低细胞毒性、组织和细胞生物相容性及靶向递送等一系列特性。本文从PLGA纳米粒的制备方法、检测技术、纳米佐剂作用及存在的问题和解决策略等方面对PLGA纳米粒的相关问题进行了综述。重点介绍了PLGA纳米粒作为疫苗佐剂方面的应用,并提出了PLGA疫苗佐剂存在的问题及解决策略。
Abstract:
Poly(D,L-lactic-co-glycolic acid), known as PLGA, is a biocompatible and biodegradable polymer chemically synthesized by the monomer lactic acid (LA) and glycolic acid (GA) in the presence of catalyst. PLGA has several interesting properties such as controlled and sustained release of drugs, low cytotoxicity, tissue and cell biocompatibility, and targeted delivery. The main aim of this review was to comprehensively address the issues related to PLGA-based nanoparticles focusing on the methods of preparation, detection technology, the action of nano-adjuvant,the existing problems and solution strategy. The application of PLGA nanoparticles as vaccine adjuvant was introduced, and the problems and solutions of PLGA vaccine adjuvant were put forward.

参考文献/References:

[1]孔玉方,杨毅梅. 纳米佐剂疫苗的特点与应用[J].医药导报,2017(6):654-658.
[2]赵思俊,孙晓亮,曲志娜,等. 新型免疫佐剂研究进展[J].中国动物检疫,2016(7):58-61.
[3]PEGGY R,KAI S,THOMAS E,et al. Vaccine adjuvants:Key tools for innovative vaccine design[J]. Current Topics in Medicinal Chemistry,2013,13(20):2562-2580.
[4]ANDERSON J M,SHIVE M S. Biodegradation and biocompatibility of PLA and PLGA microspheres[J]. Advanced Drug Delivery Reviews,2012,64:72-82.
[5]TREGONING J S,RUSSELL R F,KINNEAR E. Adjuvanted influenza vaccines[J]. Human Vaccines & Immunotherapeutics,2017,12:1-15.
[6]LUO L,ZHENG S,HUANG Y,et al. Preparation and characterization of Chinese yam polysaccharide PLGA nanoparticles and their immunological activity[J]. International Journal of Pharmaceutics,2016,511:140-150.
[7]SUN B,XIA T. Nanomaterial-based vaccine adjuvants[J]. Journal of Materials Chemistry B,2016,10:5496-5509.
[8]李林芝,刘梅,常颖. 姜黄素-PLGA纳米粒温敏原位凝胶的制备及其在兔眼房水中的药动学研究[J].中国药房,2018,29(5):640-643.
[9]MIR M,AHMED N,UR-REHMAN A. Rehman, recent applications of PLGA based nanostructures in drug delivery[J]. Colloids and Surfaces B:Biointerfaces,2017,159:217-231.
[10]RATZINGER G,FILLAFER C,KERLETA V,et al. The role of surface functionalization in the design of PLGA micro and nanoparticles[J]. Critical Reviews in Therapeutic Drug Carrier Systems,2010,27(1):70-83.
[11]王珊,花亚冰,高翔,等. 注射用乳酸-羟基乙酸共聚物微球的体内外相关性研究进展[J].药学学报,2020,56(1):158-168.
[12]GENTILE P,CHIONO V,CARMAGNOLA I,et al. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering[J]. International Journal of Molecular Sciences,2014,15(3):3640-3659.
[13]MAKADIA H K,SIEGEL S J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier[J]. Polymers,2011,3(4):1377-1397.
[14]CRUZ L J,TACKEN P J,EICH C,et al. Controlled release of antigen and Toll-like receptor ligands from PLGA nanoparticles enhances immunogenicity[J]. Nanomedicine,2017,12(5):491-510.
[15]王健群,张斌. 聚乳酸-羟基乙酸共聚物微球在骨组织工程中的应用[J].口腔医学研究,2020(9):817-820.
[16]MUNDARGI R C,BABU V R,RANGASWAMY V,et al. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives[J]. Journal of Controlled Release,2008,125(3):193-209.
[17]SHARMA S,PARMAR A,KORI S,et al. PLGA-based nanoparticles:A new paradigm in biomedical applications[J]. TrAC Trends in Analytical Chemistry,2015,80:30-40.
[18]MIRAKABAD F S T,NEJATI-KOSHKI K,AKBARZADEH A,et al. PLGA-based nanoparticles as cancer drug delivery systems[J]. Asian Pacific Journal of Cancer Prevention,2014,15(2):517-535.
[19]SOPPIMATH K S,AMINABHAVI T M,KULKARNI A R,et al. Biodegradable polymeric nanoparticles as drug delivery devices[J]. Journal of Controlled Release,2001,29:1-20.
[20]NIE H,LEE L Y,TONG H,et al. PLGA/chitosan composites from a combination of spray drying and supercritical fluid foaming techniques:New carriers for DNA delivery[J]. Journal of Controlled Release,2008,129(3):207-214.
[21]CHOURASIYA V,BOHREY S,PANDEY A. Hydrochlorothiazide containing PLGA nanoparticles:Design,characterization,in-vitro drug release and release kinetic study[J]. Polymer Science,2015,57(6):645-653.
[22]MARKOCIC E, BOTIC T, KAVCIC S,et al. In vitro degradation of poly (D,L lactide-co-glycolide) foams processed with supercritical fluids[J]. Industrial & Engineering Chemistry Research,2015,54(7):2114-2119.
[23]HUANG W,ZHANG C M. Tuning the size of poly(lactic-co-glycolic acid) (PLGA) nanoparticles fabricated by nanoprecipitation[J]. Biotechnology Journal,2018,13(1):10.
[24]LUO L,QIN T. Exploring the immunopotentiation of Chinese yam polysaccharide poly(lactic-co-glycolic acid) nanoparticles in an ovalbumin vaccine formulation in vivo[J]. Drug Delivery,2017,24(1):1099-1111.
[25]LI J,NEMES P,GUO J. Mapping intermediate degradation products of poly (lactic-co-glycolic acid) in vitro[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2018,106(3):1129-1137.
[26]ZHONG Q,MAO Q,YAN J,et al. Real-time in situ monitoring of poly(lactide-co-glycolide) coating of coronary stents using electrochemical impedance spectroscopy[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials,2015,103(3):691-699.
[27]JALIL A H,PYELL U. Quantification of zeta-potential and electrokinetic surface charge density for colloidal silica nanoparticles dependent on type and concentration of the counterion:Probing the outer helmholtz plane[J]. Journal of Physical Chemistry C,2018,122(8):4437-4453.
[28]SHI Y,XUE J,JIA L,et al. Surface-modified PLGA nanoparticles with chitosan for oral delivery of tolbutamide[J]. Colloids & Surfaces B Biointerfaces,2018,161:67-72.
[29]GHALGAOUI A,DOUDIN N,KELDERER E,et al. 1,4-phenylene diisocyanide (PDI) interaction with low-coordinated gold sites:Dissociation and adsorbate-induced restructuring[J]. Journal of Physical Chemistry C,2019,123(13):7870-7878.
[30]YU Z,HUANG L,WEN R,et al. Preparation and in vivo pharmacokinetics of rhGH-loaded PLGA microspheres[J]. Pharmaceutical Development & Technology,2018,24(4):1-7.
[31]LIU P,SUN L,LIU P,et al. Surface modification of porous PLGA scaffolds with plasma for preventing dimensional shrinkage and promoting scaffold-cell/tissue interactions[J]. Journal of Materials Chemistry B,2018,6:27-32.
[32]LU M,CHENG X Q,JIANG J Z,et al. Dual-modal photoacoustic and magnetic resonance tracking of tendon stem cells with PLGA/iron oxide microparticles in vitro[J]. PLoS One,2018,13(4):e0193362.
[33]JIE W,RUOCHEN W,NIANNIAN L,et al. High-performance reoxygenation from PLGA-PEG/PFOB emulsions:a feedback relationship between ROS and HIF-1α[J]. International Journal of Nanomedicine,2018,13:3027-3038.
[34]RAY S,RAY S G,MANDAL S. Development of bicalutamide-loaded PLGA nanoparticles:preparation,characterization and in-vitro evaluation for the treatment of prostate cancer[J]. Artificial Cells,2016,45(5):1-11.
[35]HAFNER A M,CORTHESY B,TEXTOR M,et al. Surface-assembled poly(I:C) on PEGylated PLGA microspheres as vaccine adjuvant:APC activation and bystander cell stimulation[J]. International Journal of Pharmaceutics,2016,514(1):176-188.
[36]LIU L,CAO F,LIU X,et al. Hyaluronic acid-modified cationic lipid-PLGA hybrid nanoparticles as a nanovaccine induce robust humoral and cellular immune responses[J]. ACS Applied Materials & Interfaces,2016,8(19):11969-11979.
[37]ZHOU P,AN T,ZHAO C,et al. Lactosylated PLGA nanoparticles containing -polylysine for the sustained release and liver-targeted delivery of the negatively charged proteins[J]. International Journal of Pharmaceutics,2015,478(2):633-643.
[38]HAMDY S,MOLAVI O,MA Z,et al. Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity[J]. Vaccine,2008,26(39):5050-5057.
[39]LUO W H,YANG Y W. Activation of antigen-specific CD8+T cells by poly-DL-lactide/glycolide (PLGA) nanoparticle-primed gr-1high cells[J]. Pharmaceutical Research,2016,33(4):942-955.
[40]DOLEN Y,KREUTZ M,GILEADI U,et al. Co-delivery of PLGA encapsulated invariant NKT cell agonist with antigenic protein induce strong T cell-mediated antitumor immune responses[J]. Oncoimmunology,2016,5(1):1-10.
[41]YU K,ZHAO J,ZHANG Z,et al. Enhanced delivery of paclitaxel using electrostatically-conjugated herceptin-bearing PEI/PLGA nanoparticles against HER-positive breast cancer cells[J]. International Journal of Pharmaceutics,2016,497(1):78-87.
[42]HOWARD G P,VERMA G,KE X,et al. Critical size limit of biodegradable nanoparticles for enhanced lymph node trafficking and paracortex penetration[J]. Nano Research,2019,12(4):12-18.
[43]AN M,LI M,XI J,et al. Silica nanoparticle as a lymph node targeting platform for vaccine delivery[J]. ACS Applied Materials & Interfaces,2017,9(28):23466-23475.
[44]GUTIERRO I, HERNANDEZ R M,IGARTUA M,et al. Size dependent immune response after subcutaneous,oral and intranasal administration of BSA loaded nanospheres[J]. Vaccine,2002,21:67-77.
[45]GU P,XU S,ZHOU S,et al. Optimization of angelica sinensis polysaccharide-loaded Poly (lactic-co-glycolicacid) nanoparticles by RSM and its immunological activity in vitro[J]. International Journal of Biological Macromolecules,2017,107:222-229.
[46]WUSIMAN A,GU P,LIU Z,et al. Cationic polymer modified PLGA nanoparticles encapsulating alhagi honey polysaccharides as a vaccine delivery system for ovalbumin to improve immune responses[J]. International Journal of Nanomedicine,2019,14:3221-3234.
[47]CHEN X,LIU Y,WANG L,et al. Enhanced humoral and cell-mediated immune responses generated by cationic polymer-coated PLA microspheres with adsorbed HBsAg[J]. Molecular Pharmaceutics,2014,11(6):1772-1784.
[48]LIM H J,KIM J K,PARK J S. Complexation of apoptotic genes with polyethyleneimine (PEI)-Coated Poly-(DL)-Lactic-Co-Glycolic acid nanoparticles for cancer cell apoptosis[J]. Journal of Biomedical Nanotechnology,2015,11(2):211-225.
[49]KANG B S,CHOI J S,LEE S E,et al. Enhancing the in vitro anticancer activity of albendazole incorporated into chitosan-coated PLGA nanoparticles[J]. Carbohydrate Polymers,2016,159:39-47.
[50]LEE S Y,JUNG E,PARK J H,et al. Transient aggregation of chitosan-modified poly(D,L-lactic-co-glycolic) acid nanoparticles in the blood stream and improved lung targeting efficiency[J]. Journal of Colloid and Interface Science,2016,480:102-108.
[51]ROSE F,WERN J E,GAVINS F,et al. A strong adjuvant based on glycol-chitosan-coated lipid-polymer hybrid nanoparticles potentiates mucosal immune responses against the recombinant Chlamydia trachomatis fusion antigen CTH522[J]. Journal of Controlled Release,2018,271:88-97.
[52]SONG C,NOH Y W,LIM Y T. Polymer nanoparticles for cross-presentation of exogenous antigens and enhanced cytotoxic T-lymphocyte immune response[J]. International Journal of Nanomedicine,2016,11:3753-3764.
[53]NIIKURA K,MATSUNAGA T,SUZUKI T,et al. Gold nanoparticles as a vaccine platform:influence of size and shape on immunological responses in vitro and in vivo[J]. ACS Nano,2013,7(5):3926-3938.
[54]BENNE N,VAN-DUIJN J,KUIPER J,et al. Orchestrating immune responses:How size,shape and rigidity affect the immunogenicity of particulate vaccines[J]. Journal of Controlled Release,2016,234:124-134.
[55]SHAO K,SINGHA S,CLEMENTE-CASARES X,et al. Nanoparticle-based immunotherapy for cancer[J]. Acs Nano,2015,9(1):16-30.
[56]LOZOYA-AGULLO I,ARAUJO F,GONZALEZ-ALVAREZ I,et al. PLGA nanoparticles are effective to control the colonic release and absorption on ibuprofen[J]. European Journal of Pharmaceutical Sciences,2018,115:119-128.
[57]QI F,WU J,SUN G,et al. Systematic studies of pickering emulsions stabilized by uniform-sized PLGA particles:preparation and stabilization mechanism[J]. Journal of Materials Chemistry,2014,2(43):7605-7611.
[58]WUSIMAN A,GU P,LIU Z,et al. Cationic polymer modified PLGA nanoparticles encapsulating alhagi honey polysaccharides as a vaccine delivery system for ovalbumin to improve immune responses[J]. International Journal of Nanomedicine,2019(14):3221-3234.
[59]MARTISKA J,SNEJDROVA E,DRASTIK M,et al. Terbinafine-loaded branched PLGA-based cationic nanoparticles with modifiable properties[J]. Pharmaceutical Development and Technology,2019,24(8):1-32.
[60]XIA Y,WU J,WEI W,et al. Exploiting the pliability and lateral mobility of pickering emulsion for enhanced vaccination[J]. Nature Materials,2018,17:187-194.
[61]SONG Y C,CHENG H Y,LENG C H,et al. A novel emulsion-type adjuvant containing CpG oligodeoxynucleotides enhances CD8+ T-cell-mediated anti-tumor immunity[J]. Journal of Controlled Release,2014,173:158-165.

备注/Memo

备注/Memo:
收稿日期:2022-07-15基金项目:国家自然科学基金青年科学基金项目(31902312);江苏省自然科学基金青年基金项目(BK20190521);中国博士后科学基金面上资助项目(2018M642272)作者简介:肖慎华(1963-),男,江苏丰县人,副研究馆员,主要从事动物营养学研究,(E-mail)jSnjXSh@tom.com通讯作者:刘振广,(E-mail)lzg199011@163.com
更新日期/Last Update: 2023-01-13