参考文献/References:
[1]孔玉方,杨毅梅. 纳米佐剂疫苗的特点与应用[J].医药导报,2017(6):654-658.
[2]赵思俊,孙晓亮,曲志娜,等. 新型免疫佐剂研究进展[J].中国动物检疫,2016(7):58-61.
[3]PEGGY R,KAI S,THOMAS E,et al. Vaccine adjuvants:Key tools for innovative vaccine design[J]. Current Topics in Medicinal Chemistry,2013,13(20):2562-2580.
[4]ANDERSON J M,SHIVE M S. Biodegradation and biocompatibility of PLA and PLGA microspheres[J]. Advanced Drug Delivery Reviews,2012,64:72-82.
[5]TREGONING J S,RUSSELL R F,KINNEAR E. Adjuvanted influenza vaccines[J]. Human Vaccines & Immunotherapeutics,2017,12:1-15.
[6]LUO L,ZHENG S,HUANG Y,et al. Preparation and characterization of Chinese yam polysaccharide PLGA nanoparticles and their immunological activity[J]. International Journal of Pharmaceutics,2016,511:140-150.
[7]SUN B,XIA T. Nanomaterial-based vaccine adjuvants[J]. Journal of Materials Chemistry B,2016,10:5496-5509.
[8]李林芝,刘梅,常颖. 姜黄素-PLGA纳米粒温敏原位凝胶的制备及其在兔眼房水中的药动学研究[J].中国药房,2018,29(5):640-643.
[9]MIR M,AHMED N,UR-REHMAN A. Rehman, recent applications of PLGA based nanostructures in drug delivery[J]. Colloids and Surfaces B:Biointerfaces,2017,159:217-231.
[10]RATZINGER G,FILLAFER C,KERLETA V,et al. The role of surface functionalization in the design of PLGA micro and nanoparticles[J]. Critical Reviews in Therapeutic Drug Carrier Systems,2010,27(1):70-83.
[11]王珊,花亚冰,高翔,等. 注射用乳酸-羟基乙酸共聚物微球的体内外相关性研究进展[J].药学学报,2020,56(1):158-168.
[12]GENTILE P,CHIONO V,CARMAGNOLA I,et al. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering[J]. International Journal of Molecular Sciences,2014,15(3):3640-3659.
[13]MAKADIA H K,SIEGEL S J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier[J]. Polymers,2011,3(4):1377-1397.
[14]CRUZ L J,TACKEN P J,EICH C,et al. Controlled release of antigen and Toll-like receptor ligands from PLGA nanoparticles enhances immunogenicity[J]. Nanomedicine,2017,12(5):491-510.
[15]王健群,张斌. 聚乳酸-羟基乙酸共聚物微球在骨组织工程中的应用[J].口腔医学研究,2020(9):817-820.
[16]MUNDARGI R C,BABU V R,RANGASWAMY V,et al. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives[J]. Journal of Controlled Release,2008,125(3):193-209.
[17]SHARMA S,PARMAR A,KORI S,et al. PLGA-based nanoparticles:A new paradigm in biomedical applications[J]. TrAC Trends in Analytical Chemistry,2015,80:30-40.
[18]MIRAKABAD F S T,NEJATI-KOSHKI K,AKBARZADEH A,et al. PLGA-based nanoparticles as cancer drug delivery systems[J]. Asian Pacific Journal of Cancer Prevention,2014,15(2):517-535.
[19]SOPPIMATH K S,AMINABHAVI T M,KULKARNI A R,et al. Biodegradable polymeric nanoparticles as drug delivery devices[J]. Journal of Controlled Release,2001,29:1-20.
[20]NIE H,LEE L Y,TONG H,et al. PLGA/chitosan composites from a combination of spray drying and supercritical fluid foaming techniques:New carriers for DNA delivery[J]. Journal of Controlled Release,2008,129(3):207-214.
[21]CHOURASIYA V,BOHREY S,PANDEY A. Hydrochlorothiazide containing PLGA nanoparticles:Design,characterization,in-vitro drug release and release kinetic study[J]. Polymer Science,2015,57(6):645-653.
[22]MARKOCIC E, BOTIC T, KAVCIC S,et al. In vitro degradation of poly (D,L lactide-co-glycolide) foams processed with supercritical fluids[J]. Industrial & Engineering Chemistry Research,2015,54(7):2114-2119.
[23]HUANG W,ZHANG C M. Tuning the size of poly(lactic-co-glycolic acid) (PLGA) nanoparticles fabricated by nanoprecipitation[J]. Biotechnology Journal,2018,13(1):10.
[24]LUO L,QIN T. Exploring the immunopotentiation of Chinese yam polysaccharide poly(lactic-co-glycolic acid) nanoparticles in an ovalbumin vaccine formulation in vivo[J]. Drug Delivery,2017,24(1):1099-1111.
[25]LI J,NEMES P,GUO J. Mapping intermediate degradation products of poly (lactic-co-glycolic acid) in vitro[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2018,106(3):1129-1137.
[26]ZHONG Q,MAO Q,YAN J,et al. Real-time in situ monitoring of poly(lactide-co-glycolide) coating of coronary stents using electrochemical impedance spectroscopy[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials,2015,103(3):691-699.
[27]JALIL A H,PYELL U. Quantification of zeta-potential and electrokinetic surface charge density for colloidal silica nanoparticles dependent on type and concentration of the counterion:Probing the outer helmholtz plane[J]. Journal of Physical Chemistry C,2018,122(8):4437-4453.
[28]SHI Y,XUE J,JIA L,et al. Surface-modified PLGA nanoparticles with chitosan for oral delivery of tolbutamide[J]. Colloids & Surfaces B Biointerfaces,2018,161:67-72.
[29]GHALGAOUI A,DOUDIN N,KELDERER E,et al. 1,4-phenylene diisocyanide (PDI) interaction with low-coordinated gold sites:Dissociation and adsorbate-induced restructuring[J]. Journal of Physical Chemistry C,2019,123(13):7870-7878.
[30]YU Z,HUANG L,WEN R,et al. Preparation and in vivo pharmacokinetics of rhGH-loaded PLGA microspheres[J]. Pharmaceutical Development & Technology,2018,24(4):1-7.
[31]LIU P,SUN L,LIU P,et al. Surface modification of porous PLGA scaffolds with plasma for preventing dimensional shrinkage and promoting scaffold-cell/tissue interactions[J]. Journal of Materials Chemistry B,2018,6:27-32.
[32]LU M,CHENG X Q,JIANG J Z,et al. Dual-modal photoacoustic and magnetic resonance tracking of tendon stem cells with PLGA/iron oxide microparticles in vitro[J]. PLoS One,2018,13(4):e0193362.
[33]JIE W,RUOCHEN W,NIANNIAN L,et al. High-performance reoxygenation from PLGA-PEG/PFOB emulsions:a feedback relationship between ROS and HIF-1α[J]. International Journal of Nanomedicine,2018,13:3027-3038.
[34]RAY S,RAY S G,MANDAL S. Development of bicalutamide-loaded PLGA nanoparticles:preparation,characterization and in-vitro evaluation for the treatment of prostate cancer[J]. Artificial Cells,2016,45(5):1-11.
[35]HAFNER A M,CORTHESY B,TEXTOR M,et al. Surface-assembled poly(I:C) on PEGylated PLGA microspheres as vaccine adjuvant:APC activation and bystander cell stimulation[J]. International Journal of Pharmaceutics,2016,514(1):176-188.
[36]LIU L,CAO F,LIU X,et al. Hyaluronic acid-modified cationic lipid-PLGA hybrid nanoparticles as a nanovaccine induce robust humoral and cellular immune responses[J]. ACS Applied Materials & Interfaces,2016,8(19):11969-11979.
[37]ZHOU P,AN T,ZHAO C,et al. Lactosylated PLGA nanoparticles containing -polylysine for the sustained release and liver-targeted delivery of the negatively charged proteins[J]. International Journal of Pharmaceutics,2015,478(2):633-643.
[38]HAMDY S,MOLAVI O,MA Z,et al. Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity[J]. Vaccine,2008,26(39):5050-5057.
[39]LUO W H,YANG Y W. Activation of antigen-specific CD8+T cells by poly-DL-lactide/glycolide (PLGA) nanoparticle-primed gr-1high cells[J]. Pharmaceutical Research,2016,33(4):942-955.
[40]DOLEN Y,KREUTZ M,GILEADI U,et al. Co-delivery of PLGA encapsulated invariant NKT cell agonist with antigenic protein induce strong T cell-mediated antitumor immune responses[J]. Oncoimmunology,2016,5(1):1-10.
[41]YU K,ZHAO J,ZHANG Z,et al. Enhanced delivery of paclitaxel using electrostatically-conjugated herceptin-bearing PEI/PLGA nanoparticles against HER-positive breast cancer cells[J]. International Journal of Pharmaceutics,2016,497(1):78-87.
[42]HOWARD G P,VERMA G,KE X,et al. Critical size limit of biodegradable nanoparticles for enhanced lymph node trafficking and paracortex penetration[J]. Nano Research,2019,12(4):12-18.
[43]AN M,LI M,XI J,et al. Silica nanoparticle as a lymph node targeting platform for vaccine delivery[J]. ACS Applied Materials & Interfaces,2017,9(28):23466-23475.
[44]GUTIERRO I, HERNANDEZ R M,IGARTUA M,et al. Size dependent immune response after subcutaneous,oral and intranasal administration of BSA loaded nanospheres[J]. Vaccine,2002,21:67-77.
[45]GU P,XU S,ZHOU S,et al. Optimization of angelica sinensis polysaccharide-loaded Poly (lactic-co-glycolicacid) nanoparticles by RSM and its immunological activity in vitro[J]. International Journal of Biological Macromolecules,2017,107:222-229.
[46]WUSIMAN A,GU P,LIU Z,et al. Cationic polymer modified PLGA nanoparticles encapsulating alhagi honey polysaccharides as a vaccine delivery system for ovalbumin to improve immune responses[J]. International Journal of Nanomedicine,2019,14:3221-3234.
[47]CHEN X,LIU Y,WANG L,et al. Enhanced humoral and cell-mediated immune responses generated by cationic polymer-coated PLA microspheres with adsorbed HBsAg[J]. Molecular Pharmaceutics,2014,11(6):1772-1784.
[48]LIM H J,KIM J K,PARK J S. Complexation of apoptotic genes with polyethyleneimine (PEI)-Coated Poly-(DL)-Lactic-Co-Glycolic acid nanoparticles for cancer cell apoptosis[J]. Journal of Biomedical Nanotechnology,2015,11(2):211-225.
[49]KANG B S,CHOI J S,LEE S E,et al. Enhancing the in vitro anticancer activity of albendazole incorporated into chitosan-coated PLGA nanoparticles[J]. Carbohydrate Polymers,2016,159:39-47.
[50]LEE S Y,JUNG E,PARK J H,et al. Transient aggregation of chitosan-modified poly(D,L-lactic-co-glycolic) acid nanoparticles in the blood stream and improved lung targeting efficiency[J]. Journal of Colloid and Interface Science,2016,480:102-108.
[51]ROSE F,WERN J E,GAVINS F,et al. A strong adjuvant based on glycol-chitosan-coated lipid-polymer hybrid nanoparticles potentiates mucosal immune responses against the recombinant Chlamydia trachomatis fusion antigen CTH522[J]. Journal of Controlled Release,2018,271:88-97.
[52]SONG C,NOH Y W,LIM Y T. Polymer nanoparticles for cross-presentation of exogenous antigens and enhanced cytotoxic T-lymphocyte immune response[J]. International Journal of Nanomedicine,2016,11:3753-3764.
[53]NIIKURA K,MATSUNAGA T,SUZUKI T,et al. Gold nanoparticles as a vaccine platform:influence of size and shape on immunological responses in vitro and in vivo[J]. ACS Nano,2013,7(5):3926-3938.
[54]BENNE N,VAN-DUIJN J,KUIPER J,et al. Orchestrating immune responses:How size,shape and rigidity affect the immunogenicity of particulate vaccines[J]. Journal of Controlled Release,2016,234:124-134.
[55]SHAO K,SINGHA S,CLEMENTE-CASARES X,et al. Nanoparticle-based immunotherapy for cancer[J]. Acs Nano,2015,9(1):16-30.
[56]LOZOYA-AGULLO I,ARAUJO F,GONZALEZ-ALVAREZ I,et al. PLGA nanoparticles are effective to control the colonic release and absorption on ibuprofen[J]. European Journal of Pharmaceutical Sciences,2018,115:119-128.
[57]QI F,WU J,SUN G,et al. Systematic studies of pickering emulsions stabilized by uniform-sized PLGA particles:preparation and stabilization mechanism[J]. Journal of Materials Chemistry,2014,2(43):7605-7611.
[58]WUSIMAN A,GU P,LIU Z,et al. Cationic polymer modified PLGA nanoparticles encapsulating alhagi honey polysaccharides as a vaccine delivery system for ovalbumin to improve immune responses[J]. International Journal of Nanomedicine,2019(14):3221-3234.
[59]MARTISKA J,SNEJDROVA E,DRASTIK M,et al. Terbinafine-loaded branched PLGA-based cationic nanoparticles with modifiable properties[J]. Pharmaceutical Development and Technology,2019,24(8):1-32.
[60]XIA Y,WU J,WEI W,et al. Exploiting the pliability and lateral mobility of pickering emulsion for enhanced vaccination[J]. Nature Materials,2018,17:187-194.
[61]SONG Y C,CHENG H Y,LENG C H,et al. A novel emulsion-type adjuvant containing CpG oligodeoxynucleotides enhances CD8+ T-cell-mediated anti-tumor immunity[J]. Journal of Controlled Release,2014,173:158-165.