参考文献/References:
[1]ZANNINI E, WATERS D M, COFFEY A, et al. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides[J]. Applied Microbiology and Biotechnology, 2016, 100(3):1121-1135.
[2]WANG J, SALEM D R, SANI R K. Extremophilic exopolysaccharides: a review and new perspectives on engineering strategies and applications[J]. Carbohydrate Polymers, 2019, 205:8-26.
[3]NWODO U U, GREEN E, OKOH A I. Bacterial exopolysaccharides: functionality and prospects[J]. International Journal of Molecular Sciences, 2012, 13(11):14002-14015.
[4]ROSSI F, POTRAFKA R M, PICHEL F G, et al. The role of the exopolysaccharides in enhancing hydraulic conductivity of biological soil crusts[J]. Soil Biology and Biochemistry, 2012, 46:33-40.
[5]KHAN N, BANO A. Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions[J]. PLoS One, 2019, 14(9):e0222302.
[6]SUN L, LEI P, WANG Q, et al. The endophyte Pantoea alhagi NX-11 alleviates salt stress damage to rice seedlings by secreting exopolysaccharides[J]. Frontiers in Microbiology, 2020, 10:1-13.
[7]ATOUEI M T, POURBABAEE A A, SHORAFA M. Alleviation of salinity stress on some growth parameters of wheat by exopolysaccharide-producing bacteria[J]. Iranian Journal of Science and Technology,Transactions A: Science, 2019, 43(5):2725-2733.
[8]UPADHYAY S K, SINGH J S, SINGH D P. Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition[J]. Pedosphere, 2011, 21(2):214-222.
[9]ISFAHANI F M, TAHMOURESPOUR A, HOODAJI M, et al. Influence of exopolysaccharide-producing bacteria and SiO2 nanoparticles on proline content and antioxidant enzyme activities of tomato seedlings (Solanum Lycopersicum L.) under salinity stress[J]. Polish Journal of Environmental Studies, 2019, 28(1):153-163.
[10]NASEEM H, BANO A. Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize[J]. Journal of Plant Interactions, 2014, 9(1):689-701.
[11]SANDHYA V, ALI S K Z, GROVER M, et al. Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress[J]. Journal of Plant Interactions, 2011, 6(1):1-14.
[12]PRAMANIK K, MITRA S, SARKAR A, et al. Characterization of cadmium-resistant Klebsiella pneumoniae MCC 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium[J]. Environmental Science and Pollution Research, 2017, 24(31):24419-24437.
[13]ZHANG W P, ZHAO Y J, ZHAO Z W, et al. Structural characterization and induced copper stress resistance in rice of exopolysaccharides from Lactobacillus plantarum LPC-1[J]. International Journal of Biological Macromolecules, 2020, 152:1077-1088.
[14]罗晟,赵泽文,任新宇,等. 屎肠球菌胞外多糖对镉胁迫下水稻种子萌发及幼苗生长的影响[J]. 农业环境科学学报, 2020, 39(9):1888-1899.
[15]KESHKEIH R A, ABU-GHORRAH M, JALLOUL A. Exopolysaccharides from Xanthomonas citri pv. malvacearum induce resistance in cotton against bacterial blight[J]. Biotechnologia, 2019, 100(2):101-109.
[16]刘偲嘉. PS04菌株胞外多糖诱导植物抗性及其应用研究[D]. 广州: 华南农业大学, 2016.
[17]SANDHYA V, ALI S K Z. The production of exopolysaccharide by Pseudomonas putida GAP-P45 under various abiotic stress conditions and its role in soil aggregation[J]. Microbiology, 2015, 84(4):512-519.
[18]SANDHYA V, ALI S K Z, GROVER M, et al. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45[J]. Biology & Fertility of Soils, 2009, 46(1):17-26.
[19]TEWARI S, ARORA K. Talc based exopolysaccharides formulation enhancing growth and production of Hellianthus annuus under saline conditions[J]. Cellular and Molecular Biology, 2014, 60(5):73-81.
[20]ASHRAF M, HASNAIN S, BERGE O, et al. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress[J]. Biology and Fertility of Soils, 2004, 40(3):157-162.
[21]QURASHI A W, SABRI A N. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress[J]. Brazilian Journal of Microbiology, 2012, 43(3):1183-1191.
[22]ARROUSSI H E, BENHIMA R, ELBAOUCHI A, et al. Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum)[J]. Journal of Applied Phycology, 2018, 30(5):2929-2941.
[23]LEE T E, LOUTIT M W. Effect of extracellular polysaccharides of rhizosphere bacteria on the concentration of molybdenum in plants[J]. Soil Biology & Biochemistry, 1977, 9(6):411-415.
[24]ARORA M, KAUSHIK A, RANI N, et al. Effect of cyanobacterial exopolysaccharides on salt stress alleviation and seed germination[J]. Journal of Environmental Biology, 2010, 31(5):701-704.
[25]BLAINSKI J M L, NETO A C R, SCHIMIDT E C, et al. Exopolysaccharides from Lactobacillus plantarum induce biochemical and physiological alterations in tomato plant against bacterial spot[J]. Applied Microbiology and Biotechnology, 2018, 102(11):4741-4753.
[26]BLAINSKI J M L, NETO A C R, LUIZ C, et al. Lactobacillus plantarum exopolysaccharides induce resistance against tomato bacterial spot[J]. Journal of Agricultural Science, 2017, 9(2):162-179.
[27]XU Y H, ROSSI F, COLICA G, et al. Use of cyanobacterial polysaccharides to promote shrub performances in desert soils: a potential approachfor the restoration of desertified areas[J]. Biology and Fertility of Soils, 2012, 49(2):143-152.
[28]NIU X G, SONG L C, XIAO Y N, et al. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress[J]. Frontiers in Microbiology, 2018, 8:1-11.
[29]KAVAMURA V N, SANTOS S N, SILVA J L D, et al. Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought[J]. Microbiological Research, 2013, 168(4):183-191.
[30]GHOSH D, GUPTA A, MOHAPATRA S. A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana[J]. World Journal of Microbiology & Biotechnology, 2019, 35(6):1-15.
[31]AWAD N M, TURKY A S, ABDELHAMID M T, et al. Ameliorate of environmental salt stress on the growth of Zea Mays L. plants by exopolysaccharides producing bacteria[J]. Journal of Applied Sciences Research, 2012, 8(4):2033-2044.
[32]HUSSAIN M B, ZAHIR Z A, ASGHAR H N, et al. Can catalase and exopolysaccharides producing rhizobia ameliorate drought stress in wheat?[J]. International Journal of Agriculture and Biology, 2014, 16(1):3-13.
[33]BHARTI N, YADAV D, BARNAWAL D. Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri L. Pennell under primary and secondary salt stress[J]. World Journal of Microbiology & Biotechnology, 2013, 29(2):379-387.
[34]ALENEZI F N, IMEN R, ALI C B, et al. Increased biological activity of Aneurinibacillus migulanus strains correlates with the production of new gramicidin secondary metabolites[J]. Frontiers in Microbiology, 2017, 8:1-11.
[35]TEWARI S, ARORA N K. Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions[J]. Current Microbiology, 2014, 69(4):484-494.
[36]VIMAL S R, PATEL V K, SINGH J S. Plant growth promoting Curtobacterium albidum strain SRV4: An agriculturally important microbe to alleviate salinity stress in paddy plants[J]. Ecological Indicators, 2019, 105:553-562.
[37]UPADHYAY A, KOCHAR M V, RAJAM M, et al. Players over the surface: unraveling the role of exopolysaccharides in zinc biosorption by fluorescent Pseudomonas strain Psd[J]. Frontiers in Microbiology, 2017, 8:1-15.
[38]BHARTI N, BARNAWAL D, AWASTHI A, et al. Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis[J]. Acta Physiologiae Plantarum, 2014, 36(1):45-60.
[39]YANG A, AKHTAR S S, IQBAL S, et al. Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation[J]. Functional Plant Biology, 2016, 43(7):632-642.
[40]HONG B H, JOE M M, SELVAKUMAR G, et al. Influence of salinity variations on exocellular polysaccharide production, biofilm formation and flocculation in halotolerant bacteria[J]. Journal of Environmental Biology, 2017, 38(4):657-664.
[41]LU X, LIU S F, YUE L, et al. Epsc involved in the encoding of exopolysaccharides produced by Bacillus amyloliquefaciens FZB42 act to boost the drought tolerance of Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2018, 19(12):1-18.
[42]ILYAS N, MUMTAZ K, AKHTAR N, et al. Exopolysaccharides producing bacteria for the amelioration of drought stress in wheat[J]. Sustainability, 2020, 12(21):1-19.
[43]NAJM-UL-SEHER, MAQSHOOF A, AZHAR H, et al. Potential of exopolysaccharides producing-lead tolerant Bacillus strains for improving spinach growth under lead stress[J]. International Journal of Agriculture and Biology, 2020, 24(6):1845-1854.
[44]ALI J, ALI F, AHMAD I, et al. Mechanistic elucidation of germination potential and growth of Sesbania sesban seedlings with Bacillus anthracis PM21 under heavy metals stress: an in vitro study[J]. Ecotoxicology and Environmental Safety, 2021, 208:1-11.
[45]DRIRA M, ELLEUCH J, BEN HLIMA H, et al. Optimization of exopolysaccharides production by Porphyridium sordidum and their potential to induce defense responses in Arabidopsis thaliana against Fusarium oxysporum[J]. Biomolecules, 2021, 11(2):1-17.
[46]SAIJO Y, LOO E P I. Plant immunity in signal integration between biotic and abiotic stress responses[J]. New Phytologist, 2019, 225(1):87-104.
[47]冯依涛,阎秀兰,佟雪娇,等. 再生铝企业周边农田土壤与农作物重金属含量特征分析[J]. 农业环境科学学报, 2020, 39(1):87-96.
[48]SILAMBARASAN S, LOGESWARI P, CORNEJO P, et al. Evaluation of the production of exopolysaccharide by plant growth promoting yeast Rhodotorula sp. strain CAH2 under abiotic stress conditions[J]. International Journal of Biological Macromolecules, 2019, 121:55-62.
[49]刘煜珺,张雨晴,高原,等. 乳杆菌胞外多糖抗氧化活性研究[J]. 中国食品学报, 2019, 19(6):21-35.
[50]LIU W, LI R J, HAN T J, et al. Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in arabidopsis[J]. Plant Physiology, 2015, 168(1):343-356.
[51]ARORA N, SUNITA K, MISHRA I, et al. Secondary metabolites from halotolerant plant growth promoting rhizobacteria for ameliorating salinity stress in plants[J]. Frontiers in Microbiology, 2020, 11: 1-12.
[52]DING Y J, ZHANG S Q, ZHAO L, et al. Global warming weakening the inherent stability of glaciers and permafrost[J]. Science Bulletin, 2019, 64(4):245-253.
[53]ARIF N, SHARMA N C, YADAV V, et al. Understanding heavy metal stress in a rice crop: toxicity, tolerance mechanisms, and amelioration strategies[J]. Journal of Plant Biology, 2019, 62(4):239-253.
[54]MUKHERJEE P, MITRA A, ROY M. Halomonas rhizobacteria of Avicennia marina of indian sundarbans promote rice growth under saline and heavy metal stresses through exopolysaccharide production[J]. Frontiers in Microbiology, 2019, 10:1-18.
[55]SHARMA R K, BAROT K, ARCHANA G. Root colonization by heavy metal resistant Enterobacter and its influence on metal induced oxidative stress on Cajanus cajan[J]. Journal of the Science of Food and Agriculture, 2020, 100(4):1532-1540.
[56]彭向永,于荟,石磊,等. 海带硫酸多糖对镉毒害甜瓜幼苗的保护作用[J]. 农业环境科学学报, 2010, 29(9):1640-1645.
[57]HOU W J, MA Z Q, SUN L L, et al. Extracellular polymeric substances from copper-tolerance Sinorhizobium meliloti immobilize Cu2+[J]. Journal of Hazardous Materials, 2013, 261:614-620.
[58]闫智臣,古丽君,李应德,等. 植物病害对中国豆科牧草及家畜生产的影响[J]. 家畜生态学报, 2019, 40(2):6-12.
[59]JEONG D, KIM D H, KANG I B, et al. Characterization and antibacterial activity of a novel exopolysaccharide produced by Lactobacillus kefiranofaciens DN1 isolated from kefir[J]. Food Control, 2017, 78:436-442.
[60]WU S M, LIU G, JIN W H, et al. Antibiofilm and anti-infection of a marine bacterial exopolysaccharide against Pseudomonas aeruginosa[J]. Frontiers in Microbiology, 2016, 7:1-15.
[61]DENNY T P. Involvement of bacterial polysaccharides in plant pathogenesis[J]. Annual Review of Phytopathology, 1995, 33(1):173-197.
[62]ZUCCO M A, WALTERS S A, CHONG S K, et al. Effect of soil type and vermicompost applications on tomato growth[J]. International Journal of Recycling of Organic Waste in Agriculture, 2015, 4(2):135-141.
[63]WINGENDER J, NEU T R, FLEMMING H C. What are bacterial extracellular polymeric substances?[M]. Heidelberg: Springer, 1999.
[64]艾雪. 沙漠结皮中耐盐碱细菌的分离及其固沙特性研究[D]. 兰州: 兰州交通大学, 2015.
[65]陈兰周,刘永定,宋立荣. 微鞘藻胞外多糖在沙漠土壤成土中的作用[J]. 水生生物学报, 2002, 26(2):155-159.
[66]ASHRAF S H B M. Effect of exo-polysaccharides producing bacterial inoculation on growth of roots of wheat (Triticum aestivum L.) plants grown in a salt-affected soil[J]. International Journal of Environmental Science and Technology, 2006, 3(1):43-51.
[67]张文平,王清,黄诗宸,等. 乳酸菌胞外多糖对水稻生长及土壤理化性质的影响[J]. 浙江农业学报, 2019, 31(1):130-138.
[68]张文平,李昆太,黄林,等. 产胞外多糖菌株的筛选及其对土壤团聚体的影响[J]. 江西农业大学学报, 2017, 39(4):772-779.
[69]RAAIJMAKERS J M, PAULITZ T C, STEINBERG C, et al. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms[J]. Plant and Soil, 2009, 321(1):341-361.
[70]戚韩英,汪文斌,郑昱,等. 生物膜形成机理及影响因素探究[J]. 微生物学通报, 2013, 40(4):677-685.
[71]MOENS M, BRANCO R, MORAIS P V. Arsenic accumulation by a rhizosphere bacterial strain Ochrobactrum tritici reduces rice plant arsenic levels[J]. World Journal of Microbiology & Biotechnology, 2020, 36(2):1-11.
[72]APPENROTH K J. What are ‘heavy metals’ in Plant Sciences?[J]. Acta Physiologiae Plantarum, 2010, 32(4):615-619.
[73]GROVER M, ALI S Z, SANDHYA V, et al. Role of microorganisms in adaptation of agriculture crops to abiotic stresses[J]. World Journal of Microbiology & Biotechnology, 2011, 27(5):1231-1240.
[74]GAURI S S, MANDAL S M, PATI B R. Impact of Azotobacter exopolysaccharides on sustainable agriculture[J]. Applied Microbiology and Biotechnology, 2012, 95(2):331-338.
[75]ZONG H, LI K, LIU S, et al. Improvement in cadmium tolerance of edible rape (Brassica rapa L.) with exogenous application of chitooligosaccharide[J]. Chemosphere, 2017, 181:92-100.
[76]ZAINAB N, DIN B U, JAVED M T, et al. Deciphering metal toxicity responses of flax (Linum usitatissimum L.) with exopolysaccharide and ACC-deaminase producing bacteria in industrially contaminated soils[J]. Plant Physiology and Biochemistry, 2020, 152:90-99.
[77]BHAGAT N, RAGHAV M, DUBEY S, et al. Bacterial exopolysaccharides: insight into their role in plant abiotic stress tolerance[J]. Journal of Microbiology and Biotechnology, 2021, 31(8):1045-1059.
[78]CHOUDHURY F K, RIVERO R M, BLUMWALD E, et al. Reactive oxygen species, abiotic stress and stress combination[J]. The Plant Journal, 2017, 90(5):856-867.
[79]JANCZAREK M, RACHWA K, MARZEC A, et al. Signal molecules and cell-surface components involved in early stages of the legume-rhizobium interactions[J]. Applied Soil Ecology, 2015, 85:94-113.
[80]MENESES C, GONALVES T, ALQUéRES S, et al. Gluconacetobacter diazotrophicus exopolysaccharide protects bacterial cells against oxidative stress in vitro and during rice plant colonization[J]. Plant and Soil, 2017, 416(1/2):133-147.
[81]LOIX C, HUYBRECHTS M, VANGRONSVELD J, et al. Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants[J]. Frontiers in Plant Science, 2017, 8:1-19.
[82]赵泽文,杨政宁,万琳,等. 菌糠多糖对铜离子胁迫下水稻种子萌发的影响[J]. 农业环境科学学报, 2020, 39(3):473-481.
[83]祁伟亮,孙万仓,马骊. 活性氧参与调控植物生长发育和胁迫应激响应机理的研究进展[J]. 干旱地区农业研究, 2021, 39(3):69-81,193.
[84]CHAIWANON J, WANG W F, ZHU J Y, et al. Information integration and communication in plant growth regulation[J]. Cell, 2016, 164(6):1257-1268.
[85]BEGUM N, QIN C, AHANGER M A, et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance[J]. Frontiers in Plant Science, 2019, 10:1-15.
[86]ZANDER M, LEWSEY M G, CLARK N M, et al. Integrated multi-omics framework of the plant response to jasmonic acid[J]. Nature Plants, 2020, 6(3):290-302.
[87]ZHAO X M, CHEN S, WANG S S, et al. Defensive responses of tea plants (Camellia sinensis) against tea green leafhopper attack: a multi-omics study[J]. Frontiers in Plant Science, 2020, 10:1-17.
[88]HANUS-FAJERSKA E, CIARKOWSKA K, MUSZYN′SKA E. Long-term field study on stabilization of contaminated wastes by growing clonally reproduced Silene vulgaris calamine ecotype[J]. Plant and Soil, 2019, 439(1/2):431-445.
[89]ZHANG C Y, WANG M H, GAO X Z, et al. Multi-omics research in albino tea plants: past, present, and future[J]. Scientia Horticulturae, 2020, 261:1-11.
[90]MOHITE B V, KOLI S H, PATIL S V. Heavy metal stress and its consequences on exopolysaccharide (EPS)-producing Pantoea agglomerans[J]. Applied Biochemistry and Biotechnology, 2018, 186(1):199-216.
[91]KILIC N K, DOENMEZ G. Environmental conditions affecting exopolysaccharide production by Pseudomonas aeruginosa, Micrococcus sp., and Ochrobactrum sp.[J]. Journal of Hazardous Materials, 2008, 154(1/3):1019-1024.
[92]JOULAK I, FINORE I, NICOLAUS B, et al. Evaluation of the production of exopolysaccharides by newly isolated Halomonas strains from Tunisian hypersaline environments[J]. International Journal of Biological Macromolecules, 2019, 138:658-666.
[93]ZHOU Y, CUI Y H, QU X J. Exopolysaccharides of lactic acid bacteria: Structure, bioactivity and associations: a review[J]. Carbohydrate Polymers, 2019, 207:317-332.
[94]CHENG X, HUANG L, LI K T. Antioxidant activity changes of exopolysaccharides with different carbon sources from Lactobacillus plantarum LPC-1 and its metabolomic analysis[J]. World Journal of Microbiology & Biotechnology, 2019, 35(5):1-13.
[95]MOHANRAM S, KUMAR P. Rhizosphere microbiome: revisiting the synergy of plant-microbe interactions[J]. Annals of Microbiology, 2019, 69(4):307-320.
[96]杨璐,周蓓蓓,侯亚玲,等. 枯草芽孢杆菌菌剂对盐胁迫下冬小麦生长与土壤水氮分布的影响[J].排灌机械工程学报,2021,39(5):517-524.
[97]GUPTA R, SINGH A, SRIVASTAVA M, et al. Plant-microbe interactions endorse growth by uplifting microbial community structure of Bacopa monnieri rhizosphere under nematode stress[J]. Microbiological Research, 2019, 218:87-96.
[98]MAHDHI M, TOUNEKTI T, KHEMIRA H. Effects of Prosopis juliflora on germination, plant growth of Sorghum bicolor, mycorrhiza and soil microbial properties[J]. Allelopathy Journal, 2019, 46(2):265-275.
[99]BRUNEL C, BEIFEN Y, POUTEAU R, et al. Responses of rhizospheric microbial communities of native and alien plant species to Cuscuta parasitism[J]. Microbial Ecology, 2019, 79(3):617-630.
[100]GAO M L, DONG Y M, ZHANG Z, et al. Effect of dibutyl phthalate on microbial function diversity and enzyme activity in wheat rhizosphere and non-rhizosphere soils[J]. Environmental Pollution, 2020, 265:1-14.
[101]MUANPRASAT C, CHATSUDTHIPONG V. Chitosan oligosaccharide: biological activities and potential therapeutic applications[J]. Pharmacology & Therapeutics, 2017, 170:80-97.
[102]LI Y Y, ZHANG Q Q, OU L N, et al. Response to the cold stress signaling of the tea plant (Camellia sinensis) elicited by chitosan oligosaccharide[J]. Agronomy, 2020, 10(6):915-927.
[103]BOSE S K, HOWLADER P, WANG W, et al. Oligosaccharide is a promising natural preservative for improving postharvest preservation of fruit: a review[J]. Food Chemistry, 2021, 341:1-13.
[104]NAVEED M, PHIL L, SOHAIL M, et al. Chitosan oligosaccharide (COS): an overview[J]. International Journal of Biological Macromolecules, 2019, 129:827-843.
[105]CHEONG K L, QIU H M, DU H, et al. Oligosaccharides derived from red seaweed: production, properties, and potential health and cosmetic applications[J]. Molecules, 2018, 23(10): 1-18.