[1]方仕茂,张拓,杨婷,等.基于HPLC-FLD靶向分析古茶树游离氨基酸积累特征[J].江苏农业学报,2022,38(04):1070-1077.[doi:doi:10.3969/j.issn.1000-4440.2022.04.025]
 FANG Shi-mao,ZHANG Tuo,YANG Ting,et al.Targeted analysis of free amino acid accumulation characteristics of ancient tea trees based on HPLC-FLD[J].,2022,38(04):1070-1077.[doi:doi:10.3969/j.issn.1000-4440.2022.04.025]
点击复制

基于HPLC-FLD靶向分析古茶树游离氨基酸积累特征()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年04期
页码:
1070-1077
栏目:
园艺
出版日期:
2022-08-31

文章信息/Info

Title:
Targeted analysis of free amino acid accumulation characteristics of ancient tea trees based on HPLC-FLD
作者:
方仕茂1张拓1杨婷1田小强2田洪军2刘忠英1潘科1
(1.贵州省农业科学院茶叶研究所,贵州贵阳550006;2.沿河土家族自治县生态茶发展和技术指导中心,贵州沿河565300)
Author(s):
FANG Shi-mao1ZHANG Tuo1YANG Ting1TIAN Xiao-qiang2TIAN Hong-jun2LIU Zhong-ying1PAN Ke1
(1.Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China;2.Ecological Tea Development and Technical Guidance Center of Yanhe Tujia Autonomous County, Yanhe 565300, China)
关键词:
古茶树红茶高效液相色谱-荧光检测器游离氨基酸鲜甜
Keywords:
ancient tea treeblack teahigh performance liquid chromatography-fluorescence detection (HPLC-FLD)free amino acidumami and sweet
分类号:
S571.1
DOI:
doi:10.3969/j.issn.1000-4440.2022.04.025
文献标志码:
A
摘要:
游离氨基酸是贡献茶汤鲜味的主要物质。乔木型和灌木型古茶树茶鲜叶经红茶加工工艺制成的干茶,其鲜味特征突出,但目前对古茶树茶鲜叶及制成的干茶中游离氨基酸的积累特征尚不清楚。本研究基于高效液相色谱-荧光检测器(HPLC-FLD)结合化学计量学方法靶向分析乔木型、灌木型古茶树及福鼎大白茶鲜叶和干茶样品中18种游离氨基酸含量。结果表明,茶鲜叶和干茶样品中茶氨酸含量最高,且在乔木型和灌木型古茶树鲜叶中存在显著差异;干茶中鲜味氨基酸含量减少,甜味和苦味氨基酸含量变化不明显。主成分分析结果显示,茶鲜叶样品游离氨基酸含量聚类明显,而干茶则呈现重叠或分散特征。不同树型古茶树鲜叶游离氨基酸积累存在差异,加工可改变游离氨基酸代谢,促进红茶品质形成。
Abstract:
Free amino acids are the main substances contributing to the umami of tea infusion. Dried tea processed by black tea processing technique, with fresh leaves of ancient tea trees of arbor type and shrub type show outstanding characteristics in umami, but the accumulation characteristics of free amino acid content in the fresh leaves of ancient tea trees and the dried tea are still unclear. In this study, contents of 18 free amino acids in fresh leaves and dried tea samples from ancient tea trees of arbor type, shrub type and Fudingdabai were targeted and analyzed based on high performance liquid chromatography-fluorescence detection (HPLC-FLD) combined with chemometric method. The results showed that, content of theanine was the highest in samples of fresh tea leaves and dried tea leaves, and there were significant differences between the fresh leaves from ancient tea trees of arbor type and shrub type. The content of umami amino acids decreased in dried tea, while the contents of sweet and bitter amino acids varied irregularly. Principal component analysis showed that, the fresh leaf samples clustered significantly according to free amino acid content, while the dried tea showed overlapping or scattered characteristics. There were differences in the accumulation of free amino acids in fresh leaves of different tree types of ancient tea trees, and processing could change free amino acid metabolism to promote quality formation of black tea.

参考文献/References:

[1]温顺位,刘学,徐代刚,等.铜仁市古茶树资源调查与保护利用研究[J].茶业通报, 2014, 36(3): 102-106.
[2]徐嘉民.贵州部分古茶树资源分布概况[J].当代贵州,2019(27):9.
[3]张文驹,戎俊,韦朝领,等.栽培茶树的驯化起源与传播[J].生物多样性, 2018, 26(4): 357-372.
[4]陈亮,杨亚军,虞富莲.中国茶树种质资源研究的主要进展和展望[J].植物遗传资源学报, 2004(4): 389-392.
[5]LU L T, CHEN H F, WANG X J, et al. Genome-level diversification of eight ancient tea populations in the Guizhou and Yunnan regions identifies candidate genes for core agronomic traits[J]. Horticulture Research,2021,8(1): https://doi.org/10.1038/s41438-021-00617-9.
[6]方仕茂,戴宇樵,杨婷,等. 基于多酚类和嘌呤类代谢表型的沿河古茶树红茶适制性评估[J]. 茶叶通讯, 2021, 48(3): 456-461.
[7]潘科,方仕茂,刘忠英,等.基于GC-MS/MS分析加工对古茶树红茶可溶性糖含量的影响[J]. 福建农林大学学报(自然科学版), 2021, 50(4): 490-496.
[8]宛晓春,夏涛. 茶树次生代谢[M]. 北京:科学出版社, 2015.
[9]YU Z M, YANG Z Y. Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(5): 844-858.
[10]GUO X Y, HO C T, SCHWAB W, et al. Aroma compositions of large-leaf yellow tea and potential effect of theanine on volatile formation in tea[J]. Food Chemistry,2019,280: 73-82.
[11]ZHANG M M, YANG Y Q, YUAN H B, et al. Contribution of addition theanine/sucrose on the formation of chestnut-like aroma of green tea[J]. LWT, 2020, 129: doi.org/10.1016/j.lwt.2020.109512.
[12]ZHANG W Y, ZHANG Y J, QIU H J, et al. Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties[J]. Nature Communications, 2020, 11(1): 1-12.
[13]WANG X C, FENG H, CHANG Y X, et al. Population sequencing enhances understanding of tea plant evolution[J]. Nature Communications, 2020, 11(1): 1-10.
[14]XIA E H, ZHANG H B, SHENG J, et al. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis[J]. Molecular Plant, 2017, 10(6): 866-877.
[15]WEI C L, YANG H, WANG S B, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(18): 4151-4158.
[16]FU X M, LIAO Y Y, CHENG S H, et al. Nonaqueous fractionation and overexpression of fluorescent-tagged enzymes reveals the subcellular sites of L-theanine biosynthesis in tea[J]. Plant Biotechnology Journal, 2020, 19(1): 98-108.
[17]SUN M F, ZHANG C R, LU M Q, et al. Metabolic flux enhancement and transcriptomic analysis displayed the changes of catechins following long-term pruning in tea trees (Camellia sinensis)[J]. Journal of Agricultural and Food Chemistry, 2018, 66(32): 8566-8573.
[18]WAMBULWA M C, MEEGAHAKUMBURA M K, KAMUNYA S,et al. From the wild to the cup: tracking footprints of the tea species in time and space[J]. Frontiers in Nutrition,2021, 8: DOI: 10.3389/fnut.2021.706770.
[19]刘声传,段学艺,赵华富,等. 贵州野生茶树种质资源生化多样性分析[J]. 植物遗传资源学报, 2014, 15(6): 1255-1261.
[20]杨凤,刘霞,尹杰,等. 贵州野生茶树种质资源的主要生化成分及抗旱性评价[J]. 西南农业学报, 2018, 31(6): 1122-1127.
[21]杨兴荣,矣兵,李友勇,等. 野生古茶树资源主要生化成分多样性分析[J]. 中国农学通报, 2016, 32(22): 133-139.
[22]刘声传,曹雨,鄢东海,等. 贵州野生茶树资源地理分布和形态特征与气候要素的关系[J]. 茶叶科学, 2013, 33(6): 517-525.
[23]TAO M, XIAO Z P, HUANG A, et al. Effect of 1 to 20 years storage on volatiles and aroma of Keemun congou black tea by solvent extraction-solid phase extraction-gas chromatography-mass spectrometry[J]. LWT-Food Science and Technology, 2020,130: 1-8.
[24]ZHANGL, CAO Q Q, DANIEL G, et al. Association between chemistry and taste of tea: a review[J]. Trends in Food Science & Technology, 2020, 101: 139-149.
[25]KANEKO S, KUMAZAWA K J, MASUDA H, et al. Molecular and sensory studies on the umami taste of Japanese green tea[J]. Journal of Agricultural and Food Chemistry, 2006, 54(7): 2688-94.
[26]XU Y Q, ZHANG Y N, CHEN J X, et al. Quantitative analyses of the bitterness and astringency of catechins from green tea[J]. Food Chemistry, 2018, 258: 16-24.
[27]ZHANG L, HO C T, ZHOU J, et al. Chemistry and biological activities of processed Camellia sinensis teas: a comprehensive review[J]. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(5): 1474-1495.

备注/Memo

备注/Memo:
收稿日期:2021-12-22基金项目:贵州省农业科学院基金项目[黔农科院青年科技基金(2021)29]; 贵州省科技支撑项目[黔科合成果(2021)一般030、黔科合支撑(2020)1Y146]作者简介:方仕茂(1994-),男,贵州铜仁人,硕士,助理研究员,研究方向为茶叶加工。(E-mail)fsm12340@163.com通讯作者:潘科,(E-mail)panke840215@126.com
更新日期/Last Update: 2022-09-06