[1]付沃兴,刘德春,匡柳青,等.透湿性反光膜对柑橘果皮蜡质晶体结构和组成成分的影响[J].江苏农业学报,2022,38(04):1062-1069.[doi:doi:10.3969/j.issn.1000-4440.2022.04.024]
 FU Wo-xing,LIU De-chun,KUANG Liu-qing,et al.Effects of vapor-permeable reflective film on cuticular wax structure and composition of citrus[J].,2022,38(04):1062-1069.[doi:doi:10.3969/j.issn.1000-4440.2022.04.024]
点击复制

透湿性反光膜对柑橘果皮蜡质晶体结构和组成成分的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年04期
页码:
1062-1069
栏目:
园艺
出版日期:
2022-08-31

文章信息/Info

Title:
Effects of vapor-permeable reflective film on cuticular wax structure and composition of citrus
作者:
付沃兴刘德春匡柳青蒙志鑫刘勇胡威杨莉
(江西农业大学农学院,江西南昌330045)
Author(s):
FU Wo-xingLIU De-chunKUANG Liu-qingMENG Zhi-xinLIU YongHU WeiYANG Li
(College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China)
关键词:
温州蜜柑透湿性反光膜光照果皮蜡质
Keywords:
Satsuma mandarinvapor-permeable reflective filmilluminationcuticular wax
分类号:
S666.1
DOI:
doi:10.3969/j.issn.1000-4440.2022.04.024
文献标志码:
A
摘要:
以12年生枳砧宫川温州蜜柑为试验材料,在果实膨大期覆盖透湿性反光膜,研究其对土壤含水量、冠层光照特征、果实色泽、果皮蜡质晶体结构和成分等的影响。结果表明,覆盖透湿性反光膜可以有效地维持土壤水分。柑橘树冠层的地表反射光光照度、光合指标(Pn、Tr、Gs)、色差指数(L*、a*、b*、c*和CCI)显著提高。覆盖透湿性反光膜后的果皮蜡质排列紧密、分布均匀,蜡质晶体似乎与无定型蜡质结构融合并明显减少。透湿性反光膜处理后果皮蜡质总量、蜡质组分脂肪酸和烷烃含量变化不大,醇类含量有所上升但不显著,而醛类含量极显著下降,各组分占总量比例大小顺序为烷烃(35.19%)>脂肪酸(34.60%)>醇(18.57%)>醛(11.64%)。蜡质组分含量测定结果显示:C20脂肪酸在透湿性反光膜覆盖处理后显著下降,烷烃组分含量在覆盖处理后无显著变化;C28醛在透湿性反光膜处理后相比于对照极显著下降,是引起总醛减少的主要原因;C28醇在透湿性反光膜处理后极显著上升,C32醇含量显著下降。综上所述,透湿性反光膜的铺设引起了宫川温州蜜柑光照环境的改变和光合能力的提升,使得果皮蜡质晶体数量和结构以及蜡质组分含量发生变化,从而对果实外观品质的提高起到了积极作用,推测蜡质组分中C28醛含量显著下降可能与晶体减少以及透湿性反光膜覆盖有关。
Abstract:
Miyakawa Satsuma mandarin with 12-year-old trifoliate orange rootstock was used as the test material. The vapor-permeable reflective film was covered during the fruit expansion period, and its effects on soil water content, canopy light characteristics, fruit color, wax crystal structure and composition of the peel were studied. The results showed that covering with vapor-permeable reflective film could effectively maintain soil moisture. The surface reflected light intensity, photosynthetic indices (Pn, Tr, Gs), and chromatic aberration indices (L*, a*, b*, c* and CCI) of citrus canopy were significantly improved. The cuticular wax covered by the vapor-permeable reflective film was closely arranged and evenly distributed, and the waxy crystals seemed to be fused with the amorphous wax structure and decreased significantly. The total amount of wax and the contents of fatty acids and alkanes did not change significantly after the vapor-permeable reflective film treatment, the content of alcohols increased but did not show significant difference, while the content of aldehydes decreased significantly. The proportions of each component followed the order of alkanes (35.19%)> fatty acids (34.60%)> alcohols (18.57%)> aldehydes (11.64%). The determination results of waxy components showed that C20 fatty acid decreased significantly after being covered with vapor-permeable reflective film, but there was no significant difference in the content of alkane components. Compared with the control, C28 aldehyde decreased significantly after being treated with vapor-permeable reflective film, which was the main reason for the reduction of total aldehydes. C28 alcohol increased significantly after the treatment of vapor-permeable reflective film, and C32 alcohol decreased significantly. To sum up, the installation of the vapor-permeable reflective film caused the change of light environment and the improvement of photosynthetic capacity of the Miyakawa Satsuma mandarin, which changed the number and structure of wax crystals and the content of wax components in the peel, thus playing a positive role in improving of the appearance quality of fruit. It is speculated that the significant decrease of C28 aldehyde in the wax component may be related to the reduction of crystals and the coverage of vapor-permeable reflective film.

参考文献/References:

[1]魏召新,洪林,漆巨容,等.铺设反光膜对渝红橙果实品质的影响初探[J].西南农业学报,2012,25(2):649-651.
[2]唐晓松,曹丽春,张旭,等. 新型反光材料特卫强对红富士葡萄果实着色及品质形成的影响[J]. 中国农业大学学报, 2015, 20(3): 51-58.
[3]OVERBECK V, SCHMITZ-EIBERGER M A, BLANKE M M. Reflective mulch enhances ripening and health compounds in apple fruit[J]. Journal of the Science of Food and Agriculture,2013, 93(10), 2575-2579.
[4]胡湘明,张慧琴,肖金平,等. 覆盖透湿性反光膜对桃品质的影响[J]. 浙江农业学报, 2012, 24(5): 814-820.
[5]JIA X M, YANG Q, WANG Y, et al . Effects of DuPont Tyvek  non-woven material mulching on fruit quality and chlorophyll fluorescence in Wanzhou Rose Orange[J]. Scientia Horticulturae, 2017,219:31-36.
[6]石学根,陈俊伟,徐红霞,等. 透湿性反光膜覆盖对椪柑果实品质的影响[J].果树学报, 2011, 28(3): 418-422.
[7]张慧琴,吴慧,肖金平,等. 透湿性反光膜和秸秆覆盖对越橘果实品质形成的影响[J]. 东北农业大学学报, 2012, 43(10): 50-56.
[8]宋洋,胡丹,陈巍,等. 反光膜对四季柚树体微环境及果实品质的影响[J]. 浙江农业科学, 2020, 61(7):1306-1309.
[9]高恒锦,吴韶辉,金国强,等. 透湿性反光膜对宫川温州蜜柑果实品质与果面色差的影响[J]. 江西农业学报, 2021, 33(8): 40-45.
[10]王浩,王磊,王杰,等. 透湿性反光膜覆盖对柑橘树体微环境、新梢生长及果实发育的影响[J]. 果树学报, 2017, 34(8):996-1006.
[11]陈俊伟,谢鸣,徐红霞,等. 透湿性反光膜覆盖对‘宫川’温州蜜柑果实品质的影响[J]. 浙江农业学报, 2011, 23(6):1095-1099.
[12]CHARLES M T, MAKHLOUF J, ARUL J. Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit: II. modifification of fruit surface and changes in fungal colonization[J]. Postharvest Biology & Technology, 2008, 47(1), 21-26.
[13]ROSENQUIST J K, MORRISON J C. Some factors affecting cuticle and wax accumulation on grape berries[J]. American Journal of Enology and Viticulture,1989, 40(4): 241-244.
[14]NODSKOV G B. Effects of light and temperature on the composition of epicuticular wax of barley leaves[J]. Phytochemistry,1975, 14(4):921-929.
[15]TAFOLLA-ARELLANO J C, BEZ-SAUDO R, TIZNADO-HERNNDEZ M E. The cuticle as a key factor in the quality of horticultural crops[J]. Scientia Horticulturae, 2018, 232:145-152.
[16]STEINMLLER D, TEVINI M. UV-B-Induced effects upon cuticular waxes of cucumber, bean, and barley leaves[C]//WORREST R C, CALDWELL M M. Stratospheric ozone reduction, solar ultraviolet radiation and plant life. Berlin:Springer-Verlag,1986:261-269.
[17]BRINGE K, HUNSCHE M, SCHMITZ-EIBERGER M, et al. Retention and rainfastness of mancozeb as affected by physicochemical characteristics of adaxial apple leaf surface after enhanced UV-B radiation[J]. Journal of Environmental Science and Health, Part B,2007,42(2):133-141.
[18]KAKANI V G, REDDY K R, ZHAO D, et al. Effects of ultraviolet-B radiation on cotton (Gossypium hirsutum L.) morphology and anatomy[J]. Annals of Botany,2003,91(7):817-826.
[19]STURARO M, HARTINGS H, SCHMELZER E, et al.Cloning and characterization of GLOSSY1, a maize gene involved in cuticle membrane and wax production[J]. Plant Physiology ,2005,138(1):478-489.
[20]COZMUTA A M, COZMUTA L M, PETER A, et al. The influence of far-red light on the attributes of green bell pepper fruits (Capsicum annuum L.) during storage[J]. Annals of the University Dunarea de Jos of Galati. Fascicle VI: Food Technology, 2016,40(2):98-118.
[21]BAO S G, SHI J X, LUO F, et al. Overexpression of sorghum winl1 gene confers drought tolerance in arabidopsis thaliana through the regulation of cuticular biosynthesis[J]. Plant Cell Tissue & Organ Culture, 2017,128(2):347-356.
[22]GUHLING O, HOBL B, YEATS T, et al. Cloning and characterization of a lupeol synthase involved in the synthesis of epicuticular wax crystals on stem and hypocotyl surfaces of ricinus communis[J]. Archives of Biochemistry & Biophysics, 2006,448(1/2):60-72.
[23] 张卓,王磊,陈秋菊,等.铺设反光膜对日光温室甜樱桃果实品质的影响初报[J].上海交通大学学报(农业科学版),2019,37(4):24-28.
[24]勉有明,苗芳芳,吴鹏年,等.施氮量对扬黄灌区土壤水分、温度、碳氮及玉米产量的影响[J].排灌机械工程学报,2021,39(9):950-958.
[25] 王浩. 透湿性反光膜覆盖对柑橘树体微环境、生长及果实发育的影响[D]. 上海:上海交通大学, 2017.
[26]吴黎明,蒋迎春,王志静,等.地面覆盖反光膜对温州蜜柑果实着色及品质的影响研究[J].中国南方果树,2009,38(6):39-41.
[27]姜翠翠,方智振,潘少霖,等.地面覆反光膜对秋姬李果实色泽及内在品质的影响[J].中国南方果树,2019,48(3):102-104,111.
[28]ALMEIDA S, SCHMIDT-DER C, RODRIGUES A C, et al. Effects of natural radiation, PAR and artificial ultraviolet radiation-B on the ultrastructure and histochemistry of leaf of Oryza sativa L.[J]. American Journal of Plant Sciences, 2012, 3(10):1361-1368.
[29]LIU D C, ZENG Q, JI Q X, et al. A comparison of the ultrastructure and composition of fruit’ cuticular wax from the wild-type ‘Newhall’ navel orange (Citrus sinensis [L.] Osbeck cv. Newhall) and its glossy mutant[J]. Plant Cell Reports, 2012, 31(12): 2239-2246.
[30]WANG W, ZHANG Y, XU C, et al. Cucumber ECERIFERUM1 (CsCER1), which inflfluences the cuticle properties and drought tolerance of cucumber, plays a key role in VLC alkanes biosynthesis[J]. Plant Molecular Biology, 2015,87(3):219-233.
[31]YANG Y, ZHOU B, WANG C, et al. Analysis of the inhibitory effect of 1-Methylcyclopropene on skin greasiness in postharvest apples by revealing the changes of wax constituents and gene expression[J]. Postharvest Biology and Technology, 2017,134:87-97.
[32]GORDON D C, PERRY K E, RIDING R T. Effects of UV-B radiation on epicuticular wax production and chemical composition of four Picea species[J]. New Phytologist, 1998, 138(3): 441-449.
[33]NI Y, XIA R, LI J. Changes of epicuticular wax induced by enhanced UV-B radiation impact on gas exchange in brassica napus[J]. Acta Physiologiae Plantarum, 2014,36(9):2481-2490.
[34]PILON J J, LAMBERS H, BAAS W, et al. Leaf waxes of slow-growing alpine and fast-growing lowland Poa species: inherent differences and responses to UV-B radiation[J]. Phytochemistry, 1999, 50(4):571-580.
[35]GONZALEZ R, PAUL N D, PRECY K, et al. Responses to ultraviolet-B radiation (280–315 nm) of pea (Pisum sativum) lines diffffering in leaf surface wax[J]. Physiologia Plantarum, 1996(4):852-860.
[36] 李永才,尹燕,陈松江,等. 采前套袋对苹果梨表皮蜡质结构和化学组分的影响[J]. 中国农业科学, 2012, 45(17): 3661-3668.
[37]FROHNMEYER H, STAIGER D. Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection[J]. Plant Physiology, 2013, 133(4):1420-1428.
[38]WANG J, HAO H, LIU R, et al. Comparative analysis of surface wax in mature fruit between Satsuma mandarin (Citrus unshiu) and ‘Newhall’ navel orange (Citrus sinensis) from the perspective of crystal morphology, chemical composition and key gene expression[J]. Food Chemistry, 2014, 153:177-185.
[39] SHEPHER T, ROBERTSON G W, GRIFFITHS D W, et al. Effects of environment on the composition of epicuticular wax from kale and swede[J]. Phytochemistry, 1995, 40(2):407-417.
[40]BAKER E A. The influence of environment on leaf wax development in Brassica oleracea var. gemmifera[J]. New Phytologist,1974, 73(5):955-966.
[41]GORDON D C, PRECY K E, RIDING R T. Effect of enhanced UV-B radiation on adaxial leaf surface micromorphology and epicuticular wax biosynthesis of sugar maple[J]. Chemosphere, 1998, 36(4/5): 853-858.

相似文献/References:

[1]丰智松,李增源,张卫峰,等.上海温州蜜柑叶片营养诊断及优化施肥策略[J].江苏农业学报,2022,38(05):1357.[doi:doi:10.3969/j.issn.1000-4440.2022.05.023]
 FENG Zhi-song,LI Zeng-yuan,ZHANG Wei-feng,et al.Leaf nutrition diagnosis and fertilization optimization strategy of Shanghai Satsuma[J].,2022,38(04):1357.[doi:doi:10.3969/j.issn.1000-4440.2022.05.023]

备注/Memo

备注/Memo:
收稿日期:2022-05-07基金项目:国家重点研发计划项目(2019YFD1000100);国家自然科学基金项目(31860544);江西省柑橘产业技术体系项目(JXARS-07-栽培岗位)作者简介:付沃兴(1998-),男,湖南岳阳人,硕士研究生,研究方向为果树发育生理。(E-mail)1603805000@qq.com通讯作者:杨莉,(E-mail)yangli526526@126.com;胡威,(E-mail)wei.hu1986@foxmail.com
更新日期/Last Update: 2022-09-06