[1]宋刚,方志刚,王玉龙,等.柳枝稷BiP基因的鉴定、表达分析和抗逆境功能[J].江苏农业学报,2022,38(04):889-899.[doi:doi:10.3969/j.issn.1000-4440.2022.04.004]
 SONG Gang,FANG Zhi-gang,WANG Yu-long,et al.Identification, expression analysis and function in adverse environment of BiP in switchgrass[J].,2022,38(04):889-899.[doi:doi:10.3969/j.issn.1000-4440.2022.04.004]
点击复制

柳枝稷BiP基因的鉴定、表达分析和抗逆境功能()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年04期
页码:
889-899
栏目:
遗传育种·生理生化
出版日期:
2022-08-31

文章信息/Info

Title:
Identification, expression analysis and function in adverse environment of BiP in switchgrass
作者:
宋刚12方志刚3王玉龙2蔡庆生2
(1.江苏农林职业技术学院茶与食品科技学院,江苏句容212400;2.南京农业大学生命科学学院,江苏南京210095;3.喀什大学生命与地理科学学院,新疆喀什844099)
Author(s):
SONG Gang12FANG Zhi-gang3WANG Yu-long2CAI Qing-sheng2
(1.College of Tea and Food Science and Technology,Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China;2.College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;3.College of Life and Geographic Sciences, Kashi University, Kashi 844006, China)
关键词:
柳枝稷BiP表达分析胁迫酵母转化
Keywords:
switchgrassBiPexpression analysisstressyeast transformation
分类号:
Q786
DOI:
doi:10.3969/j.issn.1000-4440.2022.04.004
文献标志码:
A
摘要:
有害环境条件对植物生长发育有不利影响,并会引起蛋白质变性或错误折叠。分子伴侣之一的绑定蛋白(BiP)通过减轻错误折叠蛋白质引起的内质网应激发挥重要的保护作用。柳枝稷(Panicum virgatum L.)是一种原产于北美、多年生C4型禾本科植物。由于其生物量大、适应性强,近年来被作为能源植物研究和利用。为明确柳枝稷中BiP基因及其在逆境下的表达和功能,本研究通过对柳枝稷基因组数据本地BLAST比对,结合具有BiP保守结构域和内质网驻留信号序列(HDEL)特征筛选的条件,共在柳枝稷基因组中鉴定出4个BiP基因,命名为PvBiP1a、PvBiP1b、PvBiP2、PvBiP3,分别位于1号和5号染色体上。多物种序列比对和进化分析结果表明,PvBiPs具有BiP蛋白典型功能结构域,PvBiP1a和PvBiP1b聚成一个进化枝,并与水稻OsBiP1聚为一类,都含有7个内含子结构;PvBiP2与PvBiP3聚为另一进化枝,无内含子结构。上游2 kb启动子序列分析结果表明,PvBiPs主要包括胁迫防御和激素应答顺式作用元件。PvBiPs受内质网胁迫诱导剂二硫苏糖醇诱导表达,在NaCl、PEG、ABA和CdCl2胁迫下表现出上调表达,PvBiP2相对表达量的峰值最高。将PvBiP1a、PvBiP2与PvBiP3克隆至pGAD426载体并转化酵母,在CdCl2、NaCl和甘露醇胁迫下进行耐性验证,结果显示,3个基因对镉和盐胁迫都有耐性,对甘露醇胁迫无耐性。本研究结果将为深入挖掘柳枝稷BiP基因功能、提升柳枝稷在逆境下尤其是对重金属镉胁迫的耐性提供理论基础。
Abstract:
Adverse environmental conditions have detrimental impact on plant growth and development, and can cause protein denaturation or misfolding. As one of molecular chaperones, the binding protein (BiP) plays an important protective effect by alleviating endoplasmic reticulum (ER) stress induced by misfolded proteins. Switchgrass (Panicum virgatum L.) is a kind of perennial C4 plant of grass family originated from North America, it has been studied and utilized as one of the energy crops in recent years due to the characteristics of high biomass yield and strong adaptability. To identify BiP genes of switchgrass and their expression and function in adverse environment, local BLAST of switchgrass genomic data was carried out, combined with screening conditions with characteristics of BiP conserved domain and ER retention signal sequence HDEL, four BiP genes named PvBiP1a, PvBiP1b, PvBiP2 and PvBiP3 were identified from the genome of switchgrass, which located on chromosome 1 and 5, respectively. Results of multi-species sequence analysis and evolutionary analysis showed that, PvBiPs had the typical functional domain of BiP, PvBiP1a and PvBiP1b clustered into a clade, and clustered into a category with rice OsBiP1, both PvBiP1a and PvBiP1b contained seven introns. PvBiP2 and PvBiP3 clustered into another clade, and neither of them had intron. Analysis results of upstream 2 kb promoter sequences showed that, the PvBiPs mainly consisted of cis-elements of stress defense and hormone response. Expressions of PvBiPs were induced by ER stress inducer dithiothreitol and were up-regulated under NaCl, polyethylene glycol, ABA and CdCl2 stresses. Among them, PvBiP2 had the highest peak value of relative expression level. PvBiP1a, PvBiP2 and PvBiP3 were then cloned into pGAD426 vector and the vector was used to transform yeast to verify the tolerance under CdCl2, NaCl and mannitol stresses. The results showed that, PvBiPs were tolerant to Cd stress and salt stress, but were not tolerant to mannitol stress. The results of this study can provide theoretical base for further exploring of the function of BiP gene in switchgrass and improvement of tolerance to adverse situation (especially under Cd stress) of switchgrass.

参考文献/References:

[1]WOEHLBIER U, HETZ C. Modulating stress responses by the UPRosome:a matter of life and death [J]. Trends in Biochemical Sciences, 2011, 36(6): 329-337.
[2]SHORE G C, PAPA F R, OAKES S A.Signaling cell death from the endoplasmic reticulum stress response[J]. Current Opinion in Cell Biology, 2011, 23(2):143-149.
[3]MERKSAMER P I, PAPA F R. The UPR and cell fate at a glance[J]. Journal of Cell Science, 2010, 123(2):1003-1006.
[4]BUCHBERGER A, BUKAU B, SOMMER T. Protein quality control in the cytosol and the endoplasmic reticulum:brothers in arms[J]. Molecular Cell, 2010, 40(2): 238-252.
[5]RON D, WALTER P. Signal integration in the endoplasmic reticulum unfolded protein response[J]. Nature Reviews Molecular Cell Biology, 2007,8(7):519-529.
[6]WAN S, JIANG L W.Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in plants[J]. Protoplasma, 2016, 253(3):753-764.
[7]MUENCH D G, WU Y, ZHANG Y, et al. Molecular cloning, expression and subcellular localization of a BiP homolog from rice endosperm tissue[J]. Plant & Cell Physiology, 1997, 38(4):404-412.
[8]FORWARD B S, MISRA S. Characterization and expression of the Douglas-fir luminal binding protein (PmBiP) [J]. Planta, 2000, 212(1):41-51.
[9]ZHANG L, ZHAO H K, DONG Q L, et al.Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.) [J]. Frontiers in Plant Science,2015,6:773.
[10]NOH S, KWON C, OH D, et al. Expression of an evolutionarily distinct novel BiP gene during the unfolded protein response in Arabidopsis thaliana[J]. Gene, 2003, 311(1):81-91.
[11]ZHU J T, HAO P C, CHEN G X, et al. Molecular cloning, phylogenetic analysis, and expression profiling of endoplasmic reticulum molecular chaperone BiP genes from bread wheat (Triticum aestivum L.) [J]. Bmc Plant Biology, 2014, 14(1):260.
[12]GUO M, LIU J H, MA X, et al. Genome-wide analysis of the Hsp70 family genes in pepper (Capsicum annuum L.) and functional identification of CaHsp70-2 involvement in heat stress[J]. Frontiers in Plant Science, 2016, 252:246-256.
[13]DENECKE J, GOLDMAN M H S, DEMOLDER J, et al. The tobacco luminal binding protein is encoded by a multigene family[J]. Plant Cell, 1991, 3(9):1025-1035.
[14]SARKAR N K, KUNDNANI P, GROVER A. Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa) [J]. Cell Stress & Chaperones, 2013, 18(4):427-437.
[15]ALVIM F C, CAROLINO S M B, JLIO CM, et al. Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress[J]. Plant Physiology, 2001, 126(3):1042-1054.
[16]VALENTE M A S, FARIA J A Q A, SOARES-RAMOS J R L, et al. The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco[J]. Journal of Experimental Botany, 2009,60(2) :533-546.
[17]WANG H, NIU H H, ZHAI Y F, et al. Characterization of BiP genes from pepper (Capsicum annuum L.) and the role of CaBiP1 in response to endoplasmic reticulum and multiple abiotic stresses[J]. Frontiers in Plant Science, 2017, 8:1122-1136.
[18]GUAN C, JIN C, JI J, et al. LcBiP, a endoplasmic reticulum chaperone binding protein gene from Lycium chinense, confers cadmium tolerance in transgenic tobacco[J]. Biotechnology Progress, 2015, 31:358-368.
[19]PIMENTEL D, PATZEK T W.Ethanol production using corn, switchgrass, and wood; iodiesel production using soybean and sunpower[J]. Natural Resources Research, 2005,14(1):256-261.
[20]TORREZ V C, JOHNSON P J, BOE A. Infestation rates and tiller morphology effects by the switchgrass moth on six cultivars of switchgrass[J]. Bioenergy Research, 2013, 6(2):808-812.
[21]SANDERSON M A, ADLER P R, BOATENG A A, et al. Switchgrass as a biofuels feedstock in the USA[J]. Canadian Journal of Plant Science, 2006, 86(5):1315-1325.
[22]PANDEY V C, BAJPAI O, SINGH N. Energy crops in sustainable phytoremediation [J]. Renewable & Sustainable Energy Reviews, 2016, 54:58-73.
[23]LIU C, LOU L, DENG J, et al.Morph-physiological responses of two switchgrass (Panicum virgatum L.) cultivars to cadmium stress[J]. Grassland Science, 2016, 62(2):92-101.
[24]汪虎. 辣椒BiP家族基因特性分析及CaBiP1在非生物胁迫中的功能鉴定
[D].杨凌:西北农林科技大学, 2017.
[25]GUIMARES, RONEY F, CAMILLO L R, et al. Genome-wide identification and expression analysis of the molecular chaperone binding protein BiP genes in Citrus[J].Tree Genetics & Genomes, 2018,14(6):1-11.
[26]HUANG LK, YAN H D, JIANG X M, et al. Valuation of candidate reference genes for normalization of quantitative RT-PCR in switchgrass under various abiotic stress conditions[J]. Bioenergy Research, 2014, 7(4):1201-1211.
[27]FIGUEIREDO J E F, CASCARDO J C M, SNIA M C, et al. Water-stress regulation and molecular analysis of the soybean BiP gene family[J]. Brazilian Journal of Plant Physiology, 1997, 9(2):103-110.
[28]LIU J X, HOWELL S H. bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis[J]. Plant Cell, 2010(22):782-796.
[29]OKADA M, LANZATELLA C, SAHA M C, et al. Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing and multilocus interactions [J]. Genetics, 2010, 185(3):745-760.
[30]YUAN S, XU B, ZHANG J, et al. Comprehensive analysis of CCCH-type zinc finger family genes facilitates functional gene discovery and reflects recent allopolyploidization event in tetraploid switchgrass[J]. BMC Genomics, 2015, 16(1):1-16.
[31]BOSTON R S, VIITANEN P V, VIERLING E. Molecular chaperones and protein folding in plants[J]. Plant Molecular Biology, 1996, 32(1/2):191-222.
[32]WEI J, GAUT J R, HENDERSHOT L M.In vitro dissociation of BiP-Peptide complexes requires a conformational change in BiP after ATP binding but does not require ATP hydrolysis[J]. Journal of Biological Chemistry, 1995, 270(44):26677-26682.
[33]LONG M, SOUZA S. Evolution of the intron-exon structure of eukaryotic genes[J]. Current Opinion in Genetics & Development, 1995, 5(6):774-778.
[34]MANIATIS T, TASIC B. Alternative pre-mRNA splicing and proteome expansion in metazoans[J]. Nature, 2002, 418(6894):236-243.
[35]LAXA M. Intron-mediated enhancement: a tool for heterologous gene expression in plants? [J] Frontiers in Plant Science,2017,7:1977.
[36]BERTOLOTTI A, ZHANG Y, HENDERSHOT L M, et al. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response[J]. Nature Cell Biology, 2000, 2(6):326-332.
[37]SHEN J S, CHEN X, HENDERSHOT L, et al. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals[J]. Developmental Cell, 2002, 3(1): 99-111.
[38]WANG T, YUAN Y, ZOU H, et al. The ER stress regulator Bip mediates cadmium-induced autophagy and neuronal senescence[J]. Scientific Reports, 2016, 6:38091.

备注/Memo

备注/Memo:
收稿日期:2021-12-16基金项目:国家自然科学基金面上项目(31372359);江苏省教育厅面上项目(19KB180015)作者简介:宋刚(1978-),男,江苏盐城人,博士,副教授,主要从事植物环境生理和快繁技术的研究。(E-mail)songgang@jsafc.edu.cn通讯作者:蔡庆生,(Tel)025-84395187;(E-mail)qscai@njau.edu.cn
更新日期/Last Update: 2022-09-06