参考文献/References:
[1]董立新.林分平均高度卫星遥感新进展[J].遥感技术与应用,2016,31(5):833-845.
[2]ZHAO F, GUO Q, KELLY M. Allometric equation choice impacts lidar-based forest biomass estimates: a case study from the Sierra National Forest, CA[J]. Agricultural and Forest Meteorology, 2012, 165: 64-72.
[3]刘亚男.基于多源遥感数据的森林地上生物量及净初级生产力估算研究[J].测绘学报,2020,49(12):1641.
[4]GREGOIRE T G , NSSET E , MCROBERTS R E , et al. Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass[J]. Remote Sensing of Environment, 2016, 173:98-108.
[5]PEDERSEN R , BOLLANDSS O M, GOBAKKEN T, et al. Deriving individual tree competition indices from airborne laser scanning[J]. Forest Ecology and Management, 2012, 280: 150-165.
[6]刘鲁霞,庞勇.机载激光雷达和地基激光雷达林业应用现状[J].世界林业研究,2014,27(1):49-56.
[7]穆喜云, 张秋良, 刘清旺, 等. 基于机载LiDAR数据的林分平均高及郁闭度反演[J]. 东北林业大学学报, 2015, 43(9): 84-89.
[8]彭涛,邢艳秋,尤号田,等.LiDAR采样形状及采样尺度对林分均高估测的影响[J].中南林业科技大学学报,2018,38(4):27-32.
[9]曾伟生,孙乡楠,王六如,等. 基于机载激光雷达数据估计林分蓄积量及平均高和断面积[J].林业资源管理,2020(2):79-86.
[10]焦义涛,邢艳秋,霍达,等. 基于机载LiDAR点云估测林分的平均树高[J]. 西北林学院学报, 2015, 30(3): 170-174.
[11]赵勋,岳彩荣,李春干,等. 基于机载 LiDAR 数据估测林分平均高[J]. 林业科学研究, 2020, 33(4): 59-66.
[12]周蓉,赵天忠,吴发云.依据BP神经网络的机载LiDAR数据估算林分平均高[J].东北林业大学学报,2021,49(9):60-66.
[13]沈剑波,雷相东,李玉堂,等.基于BP神经网络的长白落叶松人工林林分平均高预测[J].南京林业大学学报(自然科学版),2018,42(2):147-154.
[14]GRACE Y,HE W Q,CARROLL R J. Feature screening with large scale and high dimensional survival data.[J]. Biometrics, 2021,77(2):1-14.
[15]曹林,代劲松,徐建新,等. 基于机载小光斑 LiDAR 技术的亚热带森林参数信息优化提取[J]. 北京林业大学学报, 2014, 36(5): 13-21.
[16]PAOLO M, VIBRANS A C, MCROBERTS R E, et al. Methods for variable selection in LiDAR-assisted forest inventories[J]. Forestry,2017, 90: 112-124.
[17]郝红科. 基于机载激光雷达的森林参数反演研究[D]. 杨凌:西北农林科技大学, 2019.
[18]莫莉婕.国有林场森林资源可持续发展对策研究——以高峰林场为例[J].企业科技与发展,2021(4):222-224.
[19]GUYON I, WESTON J, BARNHILL S, et al. Gene selection for cancer classification using support vector machines[J]. Machine Learning, 2002, 46(1): 389-422.
[20]KE G L, MENG Q, FINLEY T, et al. LightGBM: a highly efficient gradient boosting decision tree[J]. Advances in Neural Information Processing Systems, 2017, 30: 3146-3154.
[21]BREIMAN L. Random forests[J].Machine Learning,2001,45 (1) :5-32.
[22]ACAR L. Some examples for the decentralized receding horizon control[C]. Tucson: IEEE, 1992: 1356-1359.
[23]郝玲,张佩,史逸民,等. 基于机器学习的江苏省冬小麦气象产量客观区划及歉年预测[J].江苏农业科学,2021,49(12):162-168.
[24]白婷,丁建丽,王敬哲. 基于机器学习算法的土壤有机质质量比估算[J].排灌机械工程学报,2020,38(8):829-834.
[25]赵献立,王志明. 机器学习算法在农业机器视觉系统中的应用[J].江苏农业科学,2020,48(12):226-231.