参考文献/References:
[1]郑兰芬,王晋年. 成像光谱遥感技术及其图像光谱信息提取的分析研究[J]. 环境遥感, 1992(1): 49-58,84.
[2]张学治. 基于冠层反射光谱的夏玉米氮素营养与生长监测研究[D]. 南京:南京农业大学, 2011.
[3]马勤建. 基于高光谱植被指数的棉花冠层结构参数的估算研究[D]. 石河子:石河子大学, 2008.
[4]陈硕博. 无人机多光谱遥感反演棉花光合参数与水分的模型研究[D]. 杨凌:西北农林科技大学, 2019.
[5]房华乐,任润东,苏飞,等. 高光谱遥感在农业中的应用[J]. 测绘通报, 2012(增刊): 255-257.
[6]THENKABAIL P S, SMITH R B, PAUW E D. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics[J]. Remote Sensing of Environment, 2000, 71(2): 158-182.
[7]刘冰峰. 夏玉米不同生育时期生理生态参数的高光谱遥感监测模型[D]. 杨凌:西北农林科技大学, 2016.
[8]韩沁姗. 基于近红外高光谱的甘草种子鉴别系统研建[D]. 北京:北京林业大学, 2020.
[9]彭晓伟,张爱军,王楠,等. 高光谱成像技术在作物种子方面的应用[J]. 国土资源遥感, 2020, 32(4): 23-32.
[10]曾旭. 油菜三种叶片的成像高光谱特征与SPAD值估测建模[D]. 长沙:湖南农业大学, 2019.
[11]白青蒙,韩玉国,彭致功,等. 利用叶面积指数优化冬小麦高光谱水分预测模型[J]. 应用与环境生物学报, 2020,26(4): 943-950.
[12]张龙英. 不同土壤盐度下柠条锦鸡儿叶绿素荧光监测及种子性状研究[D]. 呼和浩特:内蒙古农业大学, 2020.
[13]贺婷,李建东,刘桂鹏,等. 基于高光谱遥感的玉米全氮含量估测模型[J]. 沈阳农业大学学报, 2016,47(3): 257-265.
[14]齐双丽. 基于多角度高光谱遥感的小麦白粉病监测研究[D]. 郑州:河南农业大学, 2018.
[15]赵珊. 基于高光谱成像的玉米苗期氮素营养监测的研究[D]. 哈尔滨:东北农业大学, 2016.
[16]肖珍珍,李毅,冯浩. 西北盐碱土理化性质的高光谱建模及预测(英文)[J]. 光谱学与光谱分析, 2016, 36(5): 1615-1622.
[17]安琪琪. 土壤重金属污染检测方法的研究进展[J]. 现代农业科技, 2020(17): 166-168,173.
[18]包青岭,丁建丽,王敬哲,等. 基于随机森林算法的土壤有机质含量高光谱检测[J]. 干旱区地理, 2019,42(6): 1404-1414.
[19]刘秀英. 玉米生理参数及农田土壤信息高光谱监测模型研究[D]. 杨凌:西北农林科技大学, 2016.
[20]MAO G Z, SHI T T, ZHANG S, et al. Bibliometric analysis of insights into soil remediation[J]. Journal of Soil & Sediments, 2018, 18(7): 2520-2534.
[21]REDDY R L R, SHANKARAPPA T H, REDDY K S, et al. Review of trends in soil fertility research (2007-2016) using Scopus database[J]. Communications in Soil Science & Plant Analysis, 2019, 50(1): 1-18.
[22]胡远妹,周俊,刘海龙,等. 基于Web of Science对土壤重金属污染修复研究的计量分析[J]. 土壤学报, 2018, 55(3): 707-720.
[23]HIRSCH J E. An index to quantify an individual’s scientific research output[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(46): 16569-16572.
[24]CURRAN P J. Remote sensing of foliar chemistry[J]. Remote Sensing of Environment, 1989, 30(3): 271-278.
[25]GITELSON A A, MERZLYAK M N, LICHTENTHALER H K. Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm[J]. J Plant Physiology, 1996, 148(3/4): 501-508.
[26]HUNT E R, DORAISWAMY P C, MCMURTREY J E, et al. A visible band index for remote sensing leaf chlorophyll content at the canopy scale[J]. International Journal of Applied Earth Observations & Geoinformation, 2013, 21(1): 103-112.
[27]LYU J, DENG F L, YAN Z G. Using PROSEPCT and SVM for the estimation of chlorophyll concentration[J]. Advanced Materials Research, 2014, 989/990/991/992/993/994: 2184-2187.
[28]MORIER T, CAMBOURIS A N, CHOKMANI K. In-season nitrogen status sssessment and yield estimation using hyperspectral vegetation indices in a potato crop[J]. Agronomy Journal, 2015, 107(4): 1295-1309.
[29]LI Z H, WANG J H, XU X G, et al. Assimilation of two variables derived from hyperspectral data into the DSSAT-CERES model for grain yield and quality estimation[J]. Remote Sensing, 2015, 7(9): 12400-12418.
[30]SIMKO I, JIMENEZ-BERNI J A, FURBANK R T. Detection of decay in fresh-cut lettuce using hyperspectral imaging and chlorophyll fluorescence imaging[J]. Postharvest Biology & Technology, 2015, 106: 44-52.
[31]ELMASRY G M, NAKAUCHI S. Image analysis operations applied to hyperspectral images for non-invasive sensing of food quality-a comprehensive review[J]. Biosystems Engineering, 2016, 142: 53-82.