参考文献/References:
[1]杨一平,胡德民. 联合收割机喂入量信号采集电路的设计与研究[J]. 安徽农业科学,2008,36(35):15746-15748,15750.
[2]陈进,李耀明,季彬彬. 联合收获机喂入量测量方法[J]. 农业机械学报,2006,37(12):76-78.
[3]梁学修,陈志,张小超,等. 联合收获机喂入量在线监测系统设计与试验[J].农业机械学报,2013,44(增刊):1-6.
[4]潘静,邵陆寿,王轲. 水稻联合收割机喂入密度检测方法[J]. 农业工程学报,2010,26(8):113-116.
[5]潘静. 基于遗传算法的水稻联合收割机喂入密度检测方法研究[D]. 合肥:安徽农业大学,2011.
[6]王轲. 基于视频挖掘的成熟期水稻图像处理算法研究[D]. 合肥:安徽农业大学,2011.
[7]KUMHALA F, KROULIK M, MASEK J, et al. Development and testing of two methods for the measurement of the mowing machine feed rate[J]. Plant Soil & Environment,2003,49(11):519-524.
[8]MONTES J M, PAUL C, MELCHINGER A E. Quality assessment of rapeseed accessions by means of near-infrared spectroscopy on combine harvesters[J]. Plant Breeding,2010,126(3):329-330.
[9]EI-FAKI M S, ZHANG N, PETERSON D E. Factors affecting color based weed detection[J]. Transaction of the ASAE,2000,43 (4):1001-1009.
[10]刘汉青. 基于机器视觉的油菜收获疏密度与损失检测[D]. 南京:南京大学,2019.
[11]王远,王德建,张刚,等. 基于数码相机的水稻冠层图像分割及氮素营养诊断[J]. 农业工程学报,2012,28(17):131-136.
[12]黄巧义,张木,李苹,等. 支持向量机和最大类间方差法结合的水稻冠层图像分割方法[J]. 中国农业科技导报,2019,21(4):52-60.
[13]黄巧义,张木,黄旭,等. 基于可见光谱色彩指标Otsu法的水稻冠层图像分割[J]. 广东农业科学,2018,45(1):120-125,3.
[14]黄巧义,樊小林,张木,等. 水稻冠层图像分割方法对比研究[J]. 中国生态农业学报,2018,26(5):710-718.
[15]徐梅宣,张智刚,潘慕,等. 田间水稻冠层图像分割算法的研究[J]. 广东农业科学,2015,42(13):161-164.
[16]SELIM S Z, ISMAIL M A. k-means-type algorith-ms: a generalized convergence theorem and character-ization of local optimality[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6(1):81-87.
[17]ESTEVES R M, HACKER T, RONG C. Competitive K-means, a new accurate and distributed k-means algorithm for large datasets[C]//IEEE. IEEE 5th internati-onal conference on cloud computing technology and science. Bristol:IEEE, 2013:17-24.
[18]CHEN X, MIAO P, BU Q. Image segmentation algorithm based on particle swarm optimization with k-means optimization[C]//IEEE. IEEE International Conference on Power, Intelligent Computing and Systems. Shenyang,China:IEEE,2019:156-159.
[19]SINAGA K P, YANG M. Unsupervised k-means clustering algorithm[J]. IEEE Access, 2020,8: 80716-80727.
[20]KUMAR K M,REDDY A R M. A fast k-means clustering using prototypes for initial cluster center selection[C]//IEEE. IEEE 9th international conference on intelligent systems and control. Coimbatore:IEEE,2015:1-4.
[21]LEI G. A novel locality sensitive k-means clustering algorithm based on subtractive clustering[C]//IEEE. 7th IEEE international conference on software engineering and service science. Beijing:IEEE,2016: 836-839.
[22]GU L. A novel sample weighting k-means clustering algorithm based on angles information[C]//IEEE. International joint conference on neural networks. Vancouver, BC:IEEE, 2016:3697-3702.
[23]HUNG W,YANG M,HWANG C. Exponential-Distance weighted k-means algorithm with spatial constraints for color image segmentation[C]//IEEE. 2011 international conference on multimedia and signal processing. Guilin, Guangxi:IEEE, 2011:131-135.
[24]郭永坤,章新友,刘莉萍,等. 优化初始聚类中心的k-means聚类算法[J]. 计算机工程与应用,2020,56(15):172-178.
[25]田诗宵,丁立新,郑金秋. 基于密度峰值优化的k-means文本聚类算法[J]. 计算机工程与设计, 2017,38(4):1019-1023.
[26]贾洪杰,丁世飞,史忠植. 求解大规模谱聚类的近似加权核k-means算法[J]. 软件学报,2015,26(11):2836-2846.
[27]ESTEVES R M,HACKER T,RONG C. Cluster analysis for the cloud: Parallel competitive fitness and parallel k-means++ for large dataset analysis[C]//IEEE. 4th IEEE international conference on cloud computing technology and science proceedings. Taipei:IEEE,2012:177-184.
[28]NIU K,GAO Z,JIAO H,et al. k-means+:A developed clustering algorithm for big data[C]//CCIS. 4th international conference on cloud computing and intelligence systems(CCIS). Beijing:CCIS,2016:141-144.
[29]GADDAM S R, PHOHA V V,BALAGANI K S. k-means+ID3:A novel method for supervised anomaly detection by cascading K-means clustering and ID3 decision tree learning methods[J]. IEEE Transactions on Knowledge and Data Engineering,2007,19(3):345-354.
[30]NA S,XUMIN L,YONG G. Research on k-means clustering algorithm: An improved k-means clustering algorithm[C]//IEEE. 2010 third international symposium on intelligent information technology and security informatics. Jinggangshan: IEEE, 2010:63-67.
[31]YANG Q,LIU Y,ZHANG D,et al. Improved k-means algorithm to quickly locate optimum initial clustering number K[C]//IEEE. Proceedings of the 30th chinese control conference. Yantai:IEEE, 2011: 3319-3322.
[32]GUANG-PING C,WEN-PENG W. An improved k-means algorithm with meliorated initial center[C]//ICCSE. 7th international conference on computer science & education. Melbourne,VIC:ICCSE, 2012:150-153.
[33]LIU G L,WANG T T,YU L M,et al. The improved research on k-means clustering algorithm in initial values[C]//IEEE. Proceedings 2013 international conference on mechatronic sciences, electric engineering and computer. Shengyang:IEEE,2013:2124-2127.
[34]朱淑鑫,杨宸,顾兴健,等. K均值算法结合连续投影算法应用于土壤速效钾含量的高光谱分析[J]. 江苏农业学报,2020,36(2):358-365.
[35]BACHEM O, LUCIC M, HASSANI S H, et al. Approximate k-means++ in sublinear time[C]//AAAI. Proceedings of the thirtieth AAAI conference on artificial intelligence. Phoenix,Arizona,USA:AAAI,2016: 1459-1467.
[36]BACHEM O,LUCIC M,HASSANI H,et al. Fast and provably good seedings for k-means[C]//NIPS. 30th conference on neural information processing systems. Barcelona,Spain:NIPS,2016:55-63.
[37]CELEBI M E, KINGRAVI H A, VELA P A. A comparative study of efficient initialization methods for the k-means clustering algorithm[J]. Expert Systems with Applications,2013,40(1):200-210.
相似文献/References:
[1]胡维炜,张武,刘连忠,等.利用图像处理技术计算大豆叶片相对病斑面积[J].江苏农业学报,2016,(04):774.[doi:10.3969/j.issn.100-4440.2016.04.010]
HU Wei-wei,ZHANG Wu,LIU Lian-zhong,et al.Measurement of relative lesion area on soybean leaf using image processing technology[J].,2016,(06):774.[doi:10.3969/j.issn.100-4440.2016.04.010]
[2]车金庆,王帆,王艺洁,等.基于视觉注意机制的黄绿色苹果图像分割[J].江苏农业学报,2018,(06):1347.[doi:doi:10.3969/j.issn.1000-4440.2018.06.021]
CHE Jin-qing,WANG Fan,WANG Yi-jie,et al.A segmentation method of yellow and green apple images based on visual attention mechanism[J].,2018,(06):1347.[doi:doi:10.3969/j.issn.1000-4440.2018.06.021]
[3]王振,张善文,王献锋.基于改进全卷积神经网络的黄瓜叶部病斑分割方法[J].江苏农业学报,2019,(05):1054.[doi:doi:10.3969/j.issn.1000-4440.2019.05.008]
WANG Zhen,ZHANG Shan-wen,WANG Xian-feng.Method for segmentation of cucumber leaf lesions based on improved full convolution neural network[J].,2019,(06):1054.[doi:doi:10.3969/j.issn.1000-4440.2019.05.008]
[4]雷旺雄,卢军.葡萄采摘机器人采摘点的视觉定位[J].江苏农业学报,2020,(04):1015.[doi:doi:10.3969/j.issn.1000-4440.2020.04.029]
LEI Wang-xiong,LU Jun.Visual positioning method for picking point of grape picking robot[J].,2020,(06):1015.[doi:doi:10.3969/j.issn.1000-4440.2020.04.029]
[5]刘连忠,李孟杰,宁井铭.基于改进SLIC的光照干扰下茶树冠层图像分割[J].江苏农业学报,2020,(04):1022.[doi:doi:10.3969/j.issn.1000-4440.2020.04.030]
LIU Lian-zhong,LI Meng-jie,NING Jing-ming.Segmentation of tea plant canopy image under light interference based on improved SLIC[J].,2020,(06):1022.[doi:doi:10.3969/j.issn.1000-4440.2020.04.030]
[6]魏超宇,韩文,庞程,等.基于多尺度特征融合和密集连接网络的疏果期黄花梨植株图像分割[J].江苏农业学报,2021,(04):990.[doi:doi:10.3969/j.issn.1000-4440.2021.04.023]
WEI Chao-yu,HAN Wen,PANG Cheng,et al.Image segmentation of Huanghua pear plants at fruit-thinning stage based on multi-scale feature fusion and dense connection network[J].,2021,(06):990.[doi:doi:10.3969/j.issn.1000-4440.2021.04.023]
[7]王万亮,江高飞,严江伟,等.基于卷积评价及对抗网络的花粉、孢子图像增广算法[J].江苏农业学报,2021,(05):1190.[doi:doi:10.3969/j.issn.1000-4440.2021.05.014]
WANG Wan-liang,JIANG Gao-fei,YAN Jiang-wei,et al.Augmented algorithm for pollen and spore images based on convolution evaluation and pix2pix network[J].,2021,(06):1190.[doi:doi:10.3969/j.issn.1000-4440.2021.05.014]
[8]马立新,夏利利,刘璎瑛,等.基于图像处理的秧苗均匀度合格率检测[J].江苏农业学报,2022,38(02):387.[doi:doi:10.3969/j.issn.1000-4440.2022.02.012]
MA Li-xin,XIA Li-li,LIU Ying-ying,et al.Seedling uniformity detection based on image processing[J].,2022,38(06):387.[doi:doi:10.3969/j.issn.1000-4440.2022.02.012]
[9]许鑫,耿庆,郑凯,等.基于纹理特征与深度学习的小麦图像中的穗粒分割与计数[J].江苏农业学报,2024,(04):661.[doi:doi:10.3969/j.issn.1000-4440.2024.04.010]
XU Xin,GENG Qing,ZHENG Kai,et al.Segmentation and counting of wheat spikes and grains based on texture features and deep learning[J].,2024,(06):661.[doi:doi:10.3969/j.issn.1000-4440.2024.04.010]