参考文献/References:
[1]KIM J, SHON J, LEE C K, et al. Relation-ship between grain filling duration and leaf senescence of temperate rice under high temperature[J]. Field Crops Research, 2011, 122: 207-213.
[2]ZHONG L J, CHENG F M, WEN X, et al. The deterioration of eating and cooking quality caused by high temperature during grain filling in early-season indica rice cultivars[J]. Journal of Agronomy & Crop Science, 2005, 191: 218-225.
[3]LIM C J, YANG K A, HONG J K, et al. Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells[J]. J Plant Res, 2006, 119: 373-383.
[4]SUZUKI N, SEJIMA H, TAM R, et al. Identification of the MBF1 heat-response regulon of Arabidopsis thaliana[J]. Plant J, 2011, 66(5): 844-851.
[5]GUAN J C, YEH C H, LIN Y P, et al. A 9 bp cis-element in the promoters of class I small heat shock protein genes on chromosome 3 in rice mediates L-azetidine-2-carboxylic acid and heat shock responses[J]. Journal of Experimental Botany, 2010, 61(15): 4249-4261.
[6]JAGADISH S V, MUTHURAJAN R, OANE R, et al. Physiological and proteomic approaches to address heat tolerance during anthesis in rice(Oryza sativa L.)[J]. Journal of Expermental Botany, 2010, 61: 143-156.
[7]JUNG K H, GHO H J, NGUYEN M X, et al. Genome-wide expression analysis of HSP70 family genes in rice and identification of a cytosolic HSP70 gene highly induced under heat stress[J]. Functional & Integrative Genomics, 2013, 13(3): 391-402.
[8]TAKEHARA K, MURATA K, YAMAGUCHI T, et al. Thermo-responsive allele of sucrose synthase 3 (Sus3) provides high-temperature tolerance during the ripening stage in rice (Oryza sativa L.)[J]. Breeding Science, 2018, 68(3): 336-342.
[9]MOON J C, HAM D J, HWANG S G, et al. Molecular characterization of a heat inducible rice gene, OsHSP1, and implications for rice thermotolerance[J]. Genes Genom, 2014, 36: 151-161.
[10]MITTLER R, FINKA A, GOLOUBINOFF P. How do plants feel the heat?[J]. Trends Biochem Sci, 2012, 37(3): 118-125.
[11]陈思婷,郭房庆.植物耐热性及热激信号转导机制研究进展[J].中国科学:生命科学,2013,43(12): 1072-1081.
[12]MORO F, MUGA A. Thermal adaptation of the yeast mitochondrial Hsp70 system is regulated by the reversible unfolding of its nucleotide exchange factor[J]. J Mol Biol,2006, 358(5): 1367-1377.
[13]WANG W, VINOCUR B, SHOSEYOV O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J]. Trends Plant Sci, 2004, 9(5): 244-252.
[14]HONG S W, VIERLING E. Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress[J]. Proc Natl Acad Sci USA, 2000, 97(8): 4392-4397.
[15]JACKSON C D, KEEGSTRA K. Arabidopsis genes encoding components of the chloroplastic protein import apparatus[J]. Plant Physiol, 2001, 125:1567-1576.
[16]SU P H, LI H M. Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasts[J].Plant Cell, 2010, 22:1516-1531.
[17]ZHANG X P, GLASER E. Interaction of plant mitochondrial and chloroplast signal peptides with the Hsp70 molecular chaperone[J]. Trends Plant Sci, 2002, 7:14-21.
[18]ZHOU S, SUN H, ZHENG B, et al. Cell cycle transcription factor E2F2 mediates non-stress temperature response of AtHSP70-4 in Arabidopsis[J]. Biochem Biophys Res Commun, 2014, 455(3-4): 139-146.
[19]LEE S, LEE D W, LEE Y, et al. Heat shock protein cognate 70-4 and an E3 ubiquitin ligase, CHIP, mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis[J]. Plant Cell, 2009, 21(12): 3984-4001.
[20]WEI S S, NIU W T, ZHAI X T, et al. Arabidopsis mtHSC70-1 plays important roles in the establishment of COX-dependent respiration and redox homeostasis[J]. J Exp Bot, 2019, 70(20): 5575-5590.
[21]BARRACLOUGH R, ELLIS R J. Protein synthesis in chloroplasts IX assembly of newly-synthesized large subunits into ribulose bisphosphate carboxylase in isolated intact pea chloroplasts[J]. Biochim Biophys Acta, 1980, 608(1):19-31.
[22]HEMMINGSEN S M, ELLIS R J. Purification and properties of ribulosebisphosphate carboxylase large subunit binding protein[J]. Plant Physiology, 1986, 80(1):269-276.
[23]HEMMINGSEN S M, WOOLFORD C, VAN D, et al. Homologous plant and bacterial proteins chaperone oligomeric protein assembly[J]. Nature, 1988, 333(6171):330-334.
[24]ATSUSHI I, HIDEAKI T, MASATO N, et al. Deletion of a chaperonin 60 beta gene leads to cell death in the Arabidopsis lesion initiation 1 mutant.[J]. Plant and Cell Physiology, 2003(3):255-261.
[25]KIM S R, YANG J I, AN G. OsCpn60α1, encoding the plastid chaperonin 60α subunit, is essential for folding of rbcL[J]. Moleculer Cells, 2013, 35(5) :402-409.
[26]WU Q, ZHANG C, CHEN Y, et al. OsCpn60β1 is essential for chloroplast development in rice (Oryza sativa L.)[J]. International Journal of Molecular Sciences, 2020, 21(11) :4023.
[27]KOUMOTO Y, TSUGEKI R, SHIMADA T, et al. Isolation and characterization of a cDNA encoding mitochondrial chaperonin 10 from Arabidopsis thaliana by functional complementation of an Escherichia coli groES mutant[J]. Plant J,1996, 10(6): 1119-1125.
[28]BEN-ZVI A P, GOLOUBINOFF P. Review: mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones[J]. J Struct Biol, 2001, 135(2): 84-93.
[29]HU C, LIN S Y, CHARNG C, et al. Recent gene duplication and subfunctionalization produced a mitochondrial GrpE, the nucleotide exchange factor of the Hsp70 complex, specialized in thermotolerance to chronic heat stress in Arabidopsis[J]. Plant Physiology, 2012, 158(2):747-758.
相似文献/References:
[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(04):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(04):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(04):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(04):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(04):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(04):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(04):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
[11]徐鹏,贺一哲,尤翠翠,等.高温胁迫导致水稻颖花败育的机理及其防御措施研究进展[J].江苏农业学报,2023,(01):255.[doi:doi:10.3969/j.issn.1000-4440.2023.01.029]
XU Peng,HE Yi-zhe,YOU Cui-cui,et al.Research progress on the mechanism and defense measures of rice spikelet abortion caused by high temperature stress[J].,2023,(04):255.[doi:doi:10.3969/j.issn.1000-4440.2023.01.029]