[1]钱春花,李明阳,郑超.苏南丘陵山区森林生物量时空变化驱动因素分析[J].江苏农业学报,2021,(02):382-388.[doi:doi:10.3969/j.issn.1000-4440.2021.02.014]
 QIAN Chun-hua,LI Ming-yang,ZHENG Chao.Analysis on driving factors of spatiotemporal changes of forest biomass in hilly areas of southern Jiangsu[J].,2021,(02):382-388.[doi:doi:10.3969/j.issn.1000-4440.2021.02.014]
点击复制

苏南丘陵山区森林生物量时空变化驱动因素分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年02期
页码:
382-388
栏目:
耕作栽培·资源环境
出版日期:
2021-04-30

文章信息/Info

Title:
Analysis on driving factors of spatiotemporal changes of forest biomass in hilly areas of southern Jiangsu
作者:
钱春花12李明阳1郑超3
(1.南京林业大学林学院,江苏南京210037;2.苏州农业职业技术学院,江苏苏州215008;3.句容市委办公室,江苏句容212400)
Author(s):
QIAN Chun-hua12LI Ming-yang1ZHENG Chao3
(1.College of Forestry, Nanjing Forestry University, Nanjing 210037, China;2.Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China;3.Office of Jurong Municipal Party Committee, Jurong 212400, China)
关键词:
森林生物量时空变化驱动因素苏南丘陵山区
Keywords:
forest biomassspatiotemporal changesdriving factorshilly and mountainous areas in southern Jiangsu
分类号:
S757.2
DOI:
doi:10.3969/j.issn.1000-4440.2021.02.014
文献标志码:
A
摘要:
森林生物量是反映自然生态环境的重要指标,分析苏南经济发达区域森林生物量的时空变化,并探讨其驱动因素,对于经济发达地区的森林经营规划和生态保护具有重要意义。本研究以江苏省的重点林区句容市为研究对象,以2007年、2014年森林资源规划设计调查数据和林地变化调查数据为主要数据源,分别采用克里金、反距离权重、样条函数3种插值模型进行森林生物量估测运算,在此基础上进行时空变化、驱动因素分析。研究结果表明,在3种插值模型中,克里金模型的性能最高,反距离权重模型次之,样条函数模型的性能最低。2007-2014年,研究区高森林生物量和中森林生物量的林分面积比例呈下降趋势,低森林生物量林分面积比例呈增加趋势。空间聚类分析结果表明,2007-2014年,研究区森林生物量高的林分主要分布在句容市北部、东南部边缘地带以及东北部地区,而森林生物量低的林分主要分布在中南部平原农业区。2007-2014年,研究区大部分乡镇森林生物量呈小幅度下降趋势,森林生物量的空间聚集程度呈增强趋势。句容市森林生物量时空变化的主要原因是森林干扰指数的增加以及城镇化进程引起的林地变化。
Abstract:
Forest biomass is an important indicator to reflect the natural ecological environment. It is of great significance to analyze the spatiotemporal changes of forest biomass in economically developed areas of southern Jiangsu and explore the driving factors for forest management planning and ecological protection in economically developed areas. Jurong City of the key forest region in Jiangsu province was chosen as the study object, forest resource planning data and survey data of forest land change in 2007 and 2014 were collected as the main information source. Three forest biological interpolation models of Kriging, inverse distance weighting and spline function were applied to estimate the forest biomass, followed by the analysis of spatiotemporal changes and driving factors. The research results showed that, among the three interpolation models, the Kriging model showed the highest performance, followed by the inverse distance weighting model, and the spline function showed the lowest performance. From 2007 to 2014, the proportion of forest stands area with high and medium biomass in the study area decreased, and the proportion of forest stands area with low biomass increased. Results of the spatial cluster analysis showed that from 2007 to 2014, the forest stands with high forest biomass in the study area were mainly distributed in the north, southeast edge and northest of Jurong City, while forest stands with low biomass were mainly distributed in the agricultural areas of the central and southern plains. From 2007 to 2014, the forest biomass of most townships in the study area showed a slight decreasing trend, and the spatial aggregation of forest biomass showed a strengthened trend. The main reasons for the spatiotemporal change of forest biomass in Jurong City are the increase of forest disturbance index and the change of forest land type caused by the process of urbanization.

参考文献/References:

[1]王洋,王少剑,秦静.中国城市土地城市化水平与进程的空间评价[J]. 地理研究, 2014, 33(12): 2228-2238.
[2]PAZUR R, FERANEC J, STYCH P, et al. Changes of urbanized landscape identified and assessed by the urban atlas data: Case study of Prague and Bratislava[J]. Land Use Policy, 2017, 61: 135-146.
[3]傅伯杰, 刘世梁, 马克明. 生态系统综合评价的内容与方法[J]. 生态学报,2001,21(11):1885-1892.
[4]蒋云姣,胡曼,李明阳,等. 县域尺度森林地上生物量遥感估测方法研究[J].西南林业大学学报,2015,35(6):53-59.
[5]时宇,李明阳,杨玉峰,等. 南京紫金山风景林碳密度空间动态变化分析[J].中南林业科技大学学报,2014,34(11):145-149.
[6]SUTTON P. Modeling population density with night-time satellite imagery and GIS[J]. Computers Environment & Urban Systems, 1997, 21(3/4):227-244.
[7]徐萍,徐天蜀. 云南高黎贡山自然保护区森林碳储量估测方法的研究[J].林业资源管理,2008(1):69-73.
[8]李苗苗. 植被覆盖度的遥感估测[D].北京: 中国科学院遥感应用研究所,2003.
[9]MASEK J G, HUANG C, WOLFE R, et al. North American forest disturbance mapped from a decadal Landsat record[J].Remote Sensing of Environment,2008,112 (6): 2914-2926.
[10]张茂震,王广兴,刘安兴. 基于森林资源连续清查资料估算的浙江省森林生物量及生产力[J].林业科学,2009,45(9):13-17.
[11]杨加猛. 江苏省森林碳储量的影响因素研究:基于社会经济视角[J].生态经济,2017,33(8):201-204.
[12]刘菲. 森林资源抽样调查缺失数据填充方法研究[D].南京:南京林业大学,2019.
[13]陈尔学,李增元,武红敢,等. 基于k-NN和Landsat数据的小面积统计单元森林蓄积估测方法[J]. 林业科学研究, 2008, 21(6): 745-750.
[14]GETIS A, ORD J K. The analysis of spatial association by use of distance statistics[J]. Geographical Analysis, 1992, 24(3):189-206.
[15]BESAG J, NEWELL J. The detection of clusters in rare diseases[J]. Journal of the Royal Statistical Society, 1991, 154(1):143-155.
[16]荣媛. 基于情景分析与多准则决策的森林经营规划方法研究[D].南京:南京林业大学, 2018.
[17]安天宇. 湖南省森林碳储量的研究[D].北京:北京林业大学, 2017.
[18]余超,王斌,刘华,等. 1994-2013年安徽省森林生物量与生产力动态变化分析[J].长江流域资源与环境,2015,24(增刊1):53-61.
[19]季碧勇,陶吉兴,张国江,等. 高精度保证下的浙江省森林植被生物量评估[J].浙江农林大学学报,2012,29(3):328-334.
[20]刘双,阮宏华. 基于地统计学的广东省和广西省森林生物量和NPP空间格局分析[J].生态学杂志,2013,32(9):2502-2509.
[21]孙敏,周春国. 小班尺度森林资源质量评价——以南京市老山林场为例[J]. 江苏农业科学,2019,47(2):101-104.
[22]吴敏,韦存瑞,廖鋆章,等. 黄果厚壳桂人工林生长规律与林分更新特征分析[J].南方农业学报,2020,51(9):2199-2204.

相似文献/References:

[1]范松克,郝成元.2001-2016年河南省NDVI时空变化特征分析[J].江苏农业学报,2019,(04):860.[doi:doi:10.3969/j.issn.1000-4440.2019.04.016]
 FAN Song ke,HAO Cheng yuan.Temporal and spatial variation analysis of NDVI in Henan from 2001 to 2016[J].,2019,(02):860.[doi:doi:10.3969/j.issn.1000-4440.2019.04.016]
[2]史琛,金涛,陈春兰,等.中国粳稻全要素生产率增长的时空分异格局[J].江苏农业学报,2020,(06):1575.[doi:doi:10.3969/j.issn.1000-4440.2020.06.030]
 SHI Chen,JIN Tao,CHEN Chun-lan,et al.The spatial-temporal differentiation pattern of total factor productivity growth of japonica rice in China[J].,2020,(02):1575.[doi:doi:10.3969/j.issn.1000-4440.2020.06.030]
[3]文建川,梁平,廖育玲,等.基于相对湿润度指数的黔东南州干湿状况[J].江苏农业学报,2023,(04):989.[doi:doi:10.3969/j.issn.1000-4440.2023.04.008]
 WEN Jian-chuan,LIANG Ping,LIAO Yu -ling,et al.Arid and moist conditions in Qiandongnan Miao and Dong Autonomous Prefecture based on relative moisture index[J].,2023,(02):989.[doi:doi:10.3969/j.issn.1000-4440.2023.04.008]

备注/Memo

备注/Memo:
收稿日期:2020-09-16基金项目:国家自然科学基金项目(31770679);江苏省高等学校自然科学研究面上项目(18KJB220010)作者简介:钱春花(1982-),女,江苏南通人,博士研究生,副教授,主要从事森林资源动态变化监测与分析研究。(E-mail)qch_szai@sina.com通讯作者:李明阳,(E-mail)lmy196727@126.com
更新日期/Last Update: 2021-05-10