[1]周冬梅,何亮亮,李伟山,等.荧光假单胞菌(Pseudomonas fluorescens)MF11对根结线虫病的防效评价[J].江苏农业学报,2021,(02):326-332.[doi:doi:10.3969/j.issn.1000-4440.2021.02.007]
 ZHOU Dong-mei,HE Liang-liang,LI Wei-shan,et al.Evaluation of the control effect of Pseudomonas fluorescens MF11 on diseases caused by Meloidogyne incognita in tomato[J].,2021,(02):326-332.[doi:doi:10.3969/j.issn.1000-4440.2021.02.007]
点击复制

荧光假单胞菌(Pseudomonas fluorescens)MF11对根结线虫病的防效评价()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年02期
页码:
326-332
栏目:
植物保护
出版日期:
2021-04-30

文章信息/Info

Title:
Evaluation of the control effect of Pseudomonas fluorescens MF11 on diseases caused by Meloidogyne incognita in tomato
作者:
周冬梅1何亮亮12李伟山13冯辉1赵敏1纠敏3魏利辉12
(1.江苏省农业科学院植物保护研究所,江苏南京210014;2.南京农业大学植物保护学院,江苏南京210095;3.河南科技大学食品与生物工程学院,河南洛阳471023)
Author(s):
ZHOU Dong-mei1HE Liang-liang12LI Wei-shan13FENG Hui1ZHAO Min1JIU Min3WEI Li-hui12
(1.Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;3.College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China)
关键词:
南方根结线虫生防菌荧光假单胞菌防治效果
Keywords:
Meloidogyne incognitabiocontrol bacteriaPseudomonas fluorescenscontrol efficacy
分类号:
S432.4+5
DOI:
doi:10.3969/j.issn.1000-4440.2021.02.007
文献标志码:
A
摘要:
在根结线虫危害严重的番茄田块采集健康植株的根际,从中分离并筛选对根结线虫病具有防治作用的生防菌株。采用稀释分离法以及离体试验获得16株能显著杀灭南方根结线虫二龄线虫(J2)的菌株,其中菌株MF11对J2的致死率最高。基于生理生化分析、gyrB 和16S rRNA基因碱基序列比对,确定菌株MF11为荧光假单胞菌(Pseudomonas fluorescens)。菌株MF11发酵液浸泡番茄幼苗24 h后,J2在番茄根尖的聚集数量显著减少,侵入番茄根尖的虫量下降80.65%,表明菌株MF11可降低J2对番茄的侵染力。温室试验结果表明, 菌株MF11发酵液处理可以显著降低番茄植株86.53%根结数,以及70.2%的卵块数。田间试验结果表明,菌株MF11发酵液处理降低了根结线虫病的病情指数,其平均防效达66.71%,与10%噻唑膦颗粒剂处理防效相当。综上所述,菌株MF11不仅对根结线虫具有毒杀作用,还能降低根结线虫的侵染、发育和繁殖能力,从而有效防治作物根结线虫病。
Abstract:
Rhizosphere of healthy tomato plants in fields severely infected by root-knot nematode was collected to isolate and screen biocontrol strains with antagonistic effects on diseases caused by Meloidogyne incognita. 16 bacterial strains with significant nematocidal activity on the second-stage larvae (J2) of M. incognita were obtained by separation method of dilution and in vitro experiment. Among them, MF11 strain showed the highest lethality rate to J2. The MF11 strain was identified to be Pseudomonas fluorescens based on physiological, biochemical analysis and gene sequence alignment between gyrB and 16S rRNA. The number of J2 aggregated around the root tips of tomatoes decreased significantly 24 h after the tomato seedlings immersed in the fermentation broth of MF11 strain. The number of root-knot nematode invading the root tips of tomato reduced by 80.65%, indicating that MF11 strain could reduce the infecting effect of J2 to tomato. Experimental results in the greenhouse showed that, tomato plants treated with MF11 strain fermentation broth could decrease the number of root-knots by 86.53% and reduce the egg mass in MF11-treated tomato roots by 70.52% significantly. The results of field experiment showed that, the disease indexes of diseases caused by root-knot nematode in tomato plants treated with MF11 reduced compared with that of water control, with an average control efficacy of 66.71%, which was the same as the treatment by fosthiazate 10% granules. In summary, MF11 strain not only has toxic action on root-knot nematode, but can also decrease the infection, growth and fertility abilities of root-knot nematode to control the diseases caused by root-knot nematode in crops effectively.

参考文献/References:

[1]ADAM M, WESTPHAL A, HALLMANN J, et al. Specific microbial attachment to root knot nematodes in suppressive soil [J]. Appl Environ Microbiol, 2014, 80(9): 2679-2686.
[2]PARK C S. Rapid detection of Pythium porphyrae in commercial samples of dried Porphyra yezoensis sheets by polymerase chain reaction [J]. J Appl Phycol, 2006, 18(2):203-207.
[3]CAKMAK I, EKMEN Z I, KARAGOZ M, et al. Development and reproduction of Sancassania polyphyllae (Acari: Acaridae) feeding on entomopathogenic nematodes and tissues of insect larvae [J]. Pedobiologia, 2010, 53(4):235-240.
[4]XU H, RUAN W B, GAO Y B, et al. Effects of root-knot nematodes on cucumber leaf N and P contents, soil pH, and soil enzyme activities [J]. Chinese J Appl Ecol, 2010, 21(8):2038-2044.
[5]刘维志. 植物病原线虫学[M]. 北京:中国农业出版社,2000.
[6]FAN H, YAO M, WANG H, et al. Isolation and effect of Trichoderma citrinoviride Snef 1910 for the biological control of root-knot nematode, Meloidogyne incognita[J]. BMC Microbiol, 2020, 20(1):299.
[7]ZHANG S W, GAN Y T, LIU J, et al. Optimization of the fermentation media and parameters for the bio-control potential of Trichoderma longibrachiatum T6 against nematodes.[J]. Front Microbiol, 2020, 11(1): 574-601.
[8]D′ERRICO G, MORMILE P, MALINCONICO M, et al. Trichoderma ssp. and a carob (Ceratonia siliqua) galactomannan to control the root-knot nematode Meloidogyne incognita on tomato plants[J]. Can J Plant Pathol, 2020(3):1-8.
[9]SHARMA N, KHANNA K, MANHAS R K, et al. Insights into the role of Streptomyces hydrogenans as the plant growth promoter, photosynthetic pigment enhancer and biocontrol agent against Meloidogyne incognita in Solanum lycopersicum seedlings [J]. Plants Basel, 2020, 9(9):1-18.
[10]GHAHREMANI Z, ESCUDERO N, DANIEL B A, et al. Bacillus firmus strain I-1582, a nematode antagonist by itself and through the plant [J]. Front Plant Sci, 2020, 11. DOI:10.3389/fpls.2020.00796.
[11]NIMNOI P, RUANPANUN P. Suppression of root-knot disease and plant growth promotion of chili (Capsicum flutescens L.) using co-inoculation of Streptomyces spp. strains KPS-A032 and KPS-E004 [J]. Biol Contr, 2020,145. DOI: 10.1016/j.biocontrol.2020.104244.
[12]PORNTHIP R, PONGRAWEE N. Evaluation on the efficiency and persistence of Streptomyces jietaisiensis strain A034 in controlling root knot disease and promoting plant growth in the plant-parasitic nematode infested soils [J]. Biol Contr, 2020,144. DOI: 10.1016/j.biocontrol.2020.104221.
[13]ULLAH M A, HAFEEZ F Y. Plant growth--romoting rhizobacteria as zinc mobilizers: A promising approach for cereals biofortification[J]. Springer Berlin Heidelberg, 2014, 9:217-235.
[14]ALMAGHRABI O A, MASSOUD S I, ABDELMONEIM T S. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions [J]. Saudi J Biol Sci, 2013, 20(1):57-61.
[15]WEI X, PEI S Y, HAN Q W, et al. Antagonizing Aspergillus parasiticus and promoting peanut growth of Bacillus isolated from Peanut geocarposphere soil [J]. J Integrat Agri, 2014, 13(11):2445-2451.
[16]NI X, LAWRENCE K S , KLOEPPER J W, et al. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean[J]. PLoS One, 2017, 12(7):e0181201.
[17]BAGHERI N, AHMADZADEH M, HEYDARI R. Effects of Pseudomonas fluorescens strain UTPF5 on the mobility, mortality and hatching of root-knot nematode Meloidogyne javanica [J]. Archiv Phytopathol Plant Protect, 2014, 47(6):744-752.
[18]SEYEDEH Z D, MOHAMMAD A, HABIBALLAH C, et al. Combined of salicylic acid and Pseudomonas fluorescens CHA0 on the expression of PR1 gene and control of Meloidogyne javanica in tomato[J]. Biol Contr, 2020, 141. DOI: 10.1016/J.BIOCONTROL.2019.104134.
[19]WEI L H, SHAO Y, WAN J, et al. Isolation and characterization of a rhizobacterial antagonist of root-knot nematodes.[J]. PLoS One, 2014, 9(1):e85988.
[20]CHOI T G, MAUNG C E, LEE D R, et al. Role of bacterial antagonists of fungal pathogens, Bacillus thuringiensis KYC and Bacillus velezensis CE100 in control of root-knot nematode, Meloidogyne incognita and subsequent growth promotion of tomato[J]. Biocontr Sci Technol, 2020, 30(7):685-700.
[21]东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京:科学出版社, 2001.
[22]GALKIEWICZ J P, KELLOGG C A. Cross-kingdom amplification using bacteria-specific primers: complications for studies of coral microbial ecology [J]. Appl Environ Microbiol, 2008, 74(24):28-31.
[23]MORISHITA M, BARICHELLO J M, TAKAYAMA K, et al. Pluronic F-127 gels incorporating highly purified unsaturated fatty acids for buccal delivery of insulin[J]. Int J Pharm, 2001, 212(2):289-293.
[24]BRIDGE J, PAGE S. Estimation of root-knot nematode infestation levels on roots using a rating chart [J]. Tropic Pest Manag, 1980, 26(3):296-298.
[25]XUE Q Y, CHEN Y, LI S M, et al. Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato [J]. Biol Contr, 2009, 48(3):252-258.
[26]BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health [J]. Trend Plant Sci, 2012, 17(8):478-486.
[27]ZHOU D M, FENG H, SCHUELKE T, et al. Rhizosphere microbiomes from root knot nematode non-infested plants suppress nematode infection [J]. Microb Ecol, 2019, 78(2):470-481.
[28]MOGHADDAM M R, MOGHADDAM E M, RAVARI S B, et al. The nematicidal potential of local Bacillus species against the root-knot nematode infecting greenhouse tomatoes [J]. Biocontr Sci Tech, 2014, 24(3):279-290.
[29]KILLANI A S, ABAIDOO R C, AKINTOKUN A K, et al. Rice husk extract is potentially effective as a phytopesticide against root-soil-borne fungal pathogens of cowpea[J]. Nat Sci, 2011, 9(3):72-79.
[30]HUANG Y, XU C K, MA L, et al. Characterisation of volatiles produced from Bacillus megaterium YFM3.25 and their nematicidal activity against Meloidogyne incognita [J]. Eur J Plant Pathol, 2010, 126(3):417-422.
[31]KAVITHA P G, JONATHAN E L, NAKKEERAN S. Effects of crude antibiotic of Bacillus subtilis on hatching of eggs and mortality of juveniles of Meloidogyne incognita [J]. Nematol Mediter, 2012, 40(2):203-206.
[32]罗丽芬,江冰冰,邓琳梅,等. 三七根系分泌物中几种成分对根腐病原菌生长的影响[J].南方农业学报,2020,51(12):2952-2961.
[33]黄鑫星,蒋家陆,罗沛,等. 氨态氮浓度和收割频率对绿狐尾藻根系泌氧特性的影响[J].江苏农业学报,2020,36(5):1112-1118.
[34]张坤,刁明,景博,等. 不同灌水量与灌水频率对加工番茄 根系生长和产量的影响[J].排灌机械工程学报,2020,38(1):83-89.
[35]高伟勤,刘春艳,吴强盛.钾胁迫对枳生长及根系激素和信号物质水平的影响[J].江苏农业科学,2020,48(8):139-141.
[36]YANG G, ZHOU B, ZHANG X, et al. Effects of tomato root exudates on Meloidogyne incognita [J]. PLoS One, 2016, 11(4):e0154675.
[37]李霞. 蜡样芽孢杆菌调控番茄根系分泌物对南方根结线虫的作用[D].南京:南京师范大学,2019.
[38]BIRKETT M, DUTTA T K, POWERS S J, et al. Effect of small lipophilic molecules in tomato and rice root exudates on the behaviour of Meloidogyne incognita and M. graminicola [J]. Nematol, 2012, 14(3):309-320.
[39]OSMAN H A, MAHMOUD Y, ABD E M, et al. Effect of reniform nematode, Rotylenchulus reniformis as biotic inducer of resistance against root-knot nematode, Meloidogyne incognita in potato [J]. J Plant Protect Res, 2012, 52(3):333-336.

相似文献/References:

[1]姜素平,张健,秦盛,等.抗茄链格孢菌放线菌的筛选及鉴定[J].江苏农业学报,2017,(03):543.[doi:doi:10.3969/j.issn.1000-4440.2017.03.009]
 JIANG Su-ping,ZHANG Jian,QIN Sheng,et al.Screening and identification of antagonistic actinomyces against Alternaria solani[J].,2017,(02):543.[doi:doi:10.3969/j.issn.1000-4440.2017.03.009]
[2]段海明,余利,黄伟东,等.不同温度下6种化学杀菌剂对玉米茎腐病菌的抑制活性及与生防菌发酵上清液的混配[J].江苏农业学报,2018,(01):41.[doi:doi:10.3969/j.issn.1000-4440.2018.01.006]
 DUAN Hai-ming,YU Li,HUANG Wei-dong,et al.Inhibitory activity of six fungicides to Fusarium graminearum maize stalk rot at different temperatures and mixture screening with antagonistic bacteria fermentation supernatant[J].,2018,(02):41.[doi:doi:10.3969/j.issn.1000-4440.2018.01.006]
[3]李青,谢昶琰,张苗,等.防控甜瓜枯萎病病菌的生防菌筛选及其根际定殖[J].江苏农业学报,2023,(02):336.[doi:doi:10.3969/j.issn.1000-4440.2023.02.005]
 LI Qing,XIE Chang-yan,ZHANG Miao,et al.Screening of antagonistic bacteria against muskmelon Fusarium oxysporum and their colonization on rhizosphere[J].,2023,(02):336.[doi:doi:10.3969/j.issn.1000-4440.2023.02.005]
[4]张浩,宋扬,王建国,等.刺角瓜嫁接对厚皮甜瓜抗南方根结线虫病及成熟期果实风味、品质的影响[J].江苏农业学报,2024,(05):817.[doi:doi:10.3969/j.issn.1000-4440.2024.05.006]
 ZHANG Hao,SONG Yang,WANG Jianguo,et al.Effects of grafting with Cucumis metuliferus on resistance to Meloidogyne incognita and fruit flavor and quality at mature stage of muskmelon[J].,2024,(02):817.[doi:doi:10.3969/j.issn.1000-4440.2024.05.006]

备注/Memo

备注/Memo:
收稿日期:2021-01-21基金项目:国家自然科学基金项目(31871943);江苏省农业科技自主创新基金项目 [CX(18)2005]作者简介:周冬梅(1985-),女,江苏仪征人,博士,助理研究员,从事植物病原菌的致病机制和生防菌的作用机理研究。(E-mail)luoyuerzhou@126.com通讯作者:魏利辉,(E-mail)weilihui@jaas.ac.cn
更新日期/Last Update: 2021-05-10