参考文献/References:
[1]胡琼,吴文斌,宋茜,等. 农作物种植结构遥感提取研究进展[J].中国农业科学,2015,48(10):1900-1914.
[2]唐华俊,吴文斌,杨鹏,等. 农作物空间格局遥感监测研究进展[J].中国农业科学,2010,43(14):2879-2888.
[3]张养贞,张树文,常丽萍,等. 县级玉米遥感估产实验及其效果研究[J].地理科学,1995(2):144-153.
[4]张荣群,王盛安,高万林,等. 基于时序植被指数的县域作物遥感分类方法研究[J].农业机械学报,2015,46(S1):246-252.
[5]刘珺,田庆久,黄彦,等. 利用多时相HJ卫星CCD遥感影像提取嘉祥县秋收作物[J].遥感信息,2012,27(2):67-70.
[6]NASRALLAH A, BAGHDADI N, MHAWEJ M, et al. A novel approach for mapping wheat areas using high resolution sentinel-2 images[J].Sensors, 2018,18:7.
[7]SONOBE R, YAMAYA Y, TANI H, et al. Crop classification from Sentinel-2-derived vegetation indices using ensemble learning[J].Journal of Applied Remote Sensing,2018,12(2):26-45.
[8]ZHU J, PAN Z W, WANG H, et al. An improved multi-temporal and multi-feature tea plantation identification method using Sentinel-2 imagery[J].Sensors,2019,19:9.
[9]CORENTIN B, ADRIEN M, PETER G, et al. Forest mapping and species composition using supervised per pixel classification of Sentinel-2 imagery[J].Biotechnologie,Agronomie,Société et Environnement,2018,22:3.
[10]王大钊,王思梦,黄昌. Sentinel-2和Landsat8影像的四种常用水体指数地表水体提取对比[J].国土资源遥感,2019,31(3):157-165.
[11]刘怀鹏,安慧君. 基于Sentinel-2A的农田包围型村落提取[J].内蒙古农业大学学报(自然科学版),2019,40(3):41-45.
[12]王祁春,张柏,张树文,等. 玉米长势区域分异遥感监测──以松嫩平原玉米遥感估产实验区(梨树县)为例[J].遥感信息,1994(4):20-23.
[13]平跃鹏,臧淑英. 基于MODIS时间序列及物候特征的农作物分类[J].自然资源学报,2016,31(3):503-513.
[14]张晓萌,刘建祥,温馨,等. 基于遥感的植被覆盖度和水土流失信息提取[J].水土保持,2017,5(4):21-28.
[15]范唯唯. Sentinel-2B卫星发射成功[J].空间科学学,2017,37(4):371-372.
[16]张润雷. 基于决策树的遥感图像分类综述[J].电子制作,2018(24):16-18,55.
[17]AHMED K R, AKTER S. Analysis of landcover change in southwest bengal delta due to floods by NDVI, NDWI and K-Means cluster with landsat Multi-spectral surface reflectance satellite data[J].Remote Sensing Applications: Society and Environment,2017(8):168-181.
[18]刘人午. 基于LANDSAT卫星数据对内江主城区城市绿化监测研究[J].内江科技,2017,38(12):38-41.
[19]TIAN Y C, BAI X Y, WANG S J, et al. Spatial-temporal changes of vegetation cover in guizhou province, southern China[J].Chinese Geographical Science,2017,27(1):25-38.
[20]王婷婷,李山山,李安,等. 基于Landsat 8卫星影像的北京地区土地覆盖分类[J].中国图象图形学报,2018,20(9):1275-1284.
[21]李平,吴曼乔,曾联明. 支持向量机技术在土地利用监测的应用研究[J].测绘通报,2010(8):28-30.
[22]ZHANG C, JIN H, LIU Z, et al. Seed maize identification based ontexture analysis of GF remote sensing data[J].Transactions of the Chinese Society of Agricultural Engineering,2016,32(21):183-188.
[23]赵建鹏,李国洪,金永涛,等. 县域尺度上基于多时相影像的冬小麦面积监测[J].河北师范大学学报(自然科学版),2018,42(6):524-530.
[24]杜保佳,张晶,王宗明,等. 应用Sentinel-2A NDVI时间序列和面向对象决策树方法的农作物分类[J].地球信息科学学报,2019,21(5):740-751.
[25]钱铭杰. RVI与NDVI在植被信息提取中的应用比较[C]//中国地理信息系统协会中国遥感协会.第七届ArcGIS暨ERDAS中国用户大会论文集.北京:地震出版社,2006:662-666.
[26]王姝力,王志勇,王磊. 基于Landsat-8和Sentinel-1A辽东湾海冰分类研究[J].北京测绘,2019,33(12):1486-1492.
[27]许童羽,胡开越,周云成,等. 基于CART决策树和BP神经网络的landsat 8影像粳稻提取方法[J].沈阳农业大学学报,2020,51(2):169-176.
相似文献/References:
[1]孙庆松,张晓楠,陈利东,等.基于Sentinel-2时序谐波特征的县域农作物分类[J].江苏农业学报,2022,38(04):967.[doi:doi:10.3969/j.issn.1000-4440.2022.04.013]
SUN Qing-song,ZHANG Xiao-nan,CHEN Li-dong,et al.Crop classification in counties based on Sentinel-2 temporal harmonic characteristics[J].,2022,38(06):967.[doi:doi:10.3969/j.issn.1000-4440.2022.04.013]
[2]李亚妮,曹建君,杨树文,等.基于决策树的大尺度复杂地区夏收作物遥感提取与分析[J].江苏农业学报,2022,38(05):1257.[doi:doi:10.3969/j.issn.1000-4440.2022.05.012]
LI Ya-ni,CAO Jian-jun,YANG Shu-wen,et al.Extraction and analysis of summer crops in large-scale complex areas based on decision tree[J].,2022,38(06):1257.[doi:doi:10.3969/j.issn.1000-4440.2022.05.012]
[3]于天祥,樊红.基于Sentinel-2多时相遥感影像的冬小麦种植面积监测[J].江苏农业学报,2024,(09):1653.[doi:doi:10.3969/j.issn.1000-4440.2024.09.009]
YU Tianxiang,FAN Hong.Remote sensing monitoring of winter wheat planting area based on multi-temporal Sentinel-2 imagery[J].,2024,(06):1653.[doi:doi:10.3969/j.issn.1000-4440.2024.09.009]