[1]马志宇,吴颖,夏川,等.基于改进DRF算法的农业微服务负载均衡[J].江苏农业学报,2020,(05):1298-1304.[doi:doi:10.3969/j.issn.1000-4440.2020.05.029]
 MA Zhi-yu,WU Ying,XIA Chuan,et al.Agricultural microservice load balancing based on improved dominant resource fairness (DRF) algorithm[J].,2020,(05):1298-1304.[doi:doi:10.3969/j.issn.1000-4440.2020.05.029]
点击复制

基于改进DRF算法的农业微服务负载均衡()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年05期
页码:
1298-1304
栏目:
农业经济·农业信息
出版日期:
2020-10-31

文章信息/Info

Title:
Agricultural microservice load balancing based on improved dominant resource fairness (DRF) algorithm
作者:
马志宇1吴颖1夏川1刘飞12吴云志12乐毅12张友华12
(1.安徽农业大学信息与计算机学院,安徽合肥230036;2.安徽农业大学/安徽省北斗精准农业信息工程实验室,安徽合肥230036)
Author(s):
MA Zhi-yu1WU Ying1XIA Chuan1LIU Fei12WU Yun-zhi12YUE Yi12ZHANG You-hua12
(1.School of Information & Computer,Anhui Agricultural University,Hefei 230036,China;2.Anhui Agricultural University, Anhui Provincial Engineering Laboratory of Beidou Precision Agriculture Information,Hefei 230036,China)
关键词:
负载均衡微服务物联网智慧农业主导资源公平分配(DRF)算法
Keywords:
load balancingmicroservicesinternet of thingssmart agriculturedominant resource fairness (DRF) algorithm
分类号:
F303.3
DOI:
doi:10.3969/j.issn.1000-4440.2020.05.029
文献标志码:
A
摘要:
微服务作为一种新型的互联网平台架构设计,在现代智慧农业中具有细粒度、低耦合度和高可靠性的优势。在负载均衡智慧农业微服务领域,目前针对复杂农业环境下的特定微服务负载均衡方案的研究较少,而高性能微服务负载均衡策略能够有效提升农业物联网的网络体验和性能指标。本研究提出一种改进的主导资源公平分配(Dominant resource fairness, DRF)算法,通过引入多角度的性能测评因素,着力于提升在智慧农业平台的微服务化下实现服务高效负载均衡的性能。经测试,本研究提出的算法相比于目前流行的微服务平台自带的负载均衡算法在响应时间、吞吐率和稳定性方面有明显提升,实现了各个农业生产单位物联网设备和数据终端以低耦合度的方式接入系统平台,同时实现高效地利用、治理和规范化来自各个数据源的农情数据,具有较高的实用价值。
Abstract:
Microservice is a new type of architecture design for internet platform, with the advantages of fine granularity, low coupling degree and high reliability in modern smart agriculture. In the field of load balancing of smart agricultural microservices, there are few researches on load balancing schemes of specific microservice under complex agricultural environments in the current, and load balancing strategies of efficient microservice can effectively improve the network experience and performance index of agricultural internet of things (IOT). This paper proposed an improved dominant resource fairness (DRF) algorithm and focused on improving the performance of service efficient load balancing under micro-servitization of smart agriculture platform by introducing multi-angle performance evaluation factors. After testing, the algorithm proposed in this paper showed significant improvement in response time, throughput and stability compared with the load balancing algorithms provided by current popular microservice platforms. IOT equipment and data terminal of each agricultural production unit can be connected to the system platform in a mode of low coupling degree, while agricultural data from various data sources can be effectively utilized, managed and standardized. The algorithm proposed in this paper shows good practical value.

参考文献/References:

[1]李道亮,杨昊. 农业物联网技术研究进展与发展趋势分析[J].农业机械学报,2018,49(1):1-20.
[2]李菁. 改进快速稀疏算法的云计算资源负载均衡[J].微型电脑应用,2019,35(10):36-38.
[3]FOWLER M, LEWIS J. Microservices[EB/OL]. (2014-03-25)
[2020-03-04]. https://martinfowler.com/articles/microservices.html.
[4]辛园园,钮俊,谢志军,等. 微服务体系结构实现框架综述[J].计算机工程与应用,2018,54(19):10-17.
[5]龙新征,彭一明,李若淼. 基于微服务框架的信息服务平台[J].东南大学学报(自然科学版),2017,47(增刊1):48-52.
[6]李瑾,郭美荣,高亮亮. 农业物联网技术应用及创新发展策略[J].农业工程学报,2015,31(增刊2):200-209.
[7]王冉,徐本崇,魏瑞成,等. 基于无线传感网络的畜禽舍环境监控系统的设计与实现[J].江苏农业学报,2010,26(3):562-566.
[8]陈栋,吴保国,陈天恩,等. 分布式多源农林物联网感知数据共享平台研发[J].农业工程学报,2017,33(增刊1): 300-307.
[9]徐琛杰,周翔,彭鑫,等. 面向微服务系统的运行时部署优化[J].计算机应用与软件,2018,35(10):85-93.
[10]辛园园,钮俊,谢志军,等. 微服务体系结构实现框架综述[J].计算机工程与应用,2018,54(19): 10-17.
[11]徐浪,王青华. 描述统计学[J]. 成都:西南财经大学出版社, 2001.
[12]叶小榕,邵晴. 基于Spark的大规模社交网络社区发现原型系统[J].科技导报,2018,36(23):93-101.
[13]叶青. 国家工业现代化水平的实证研究——基于二次现代化理论的视角[J].理论与现代化,2016(5): 15-23.
[14]SHELTON K, HAYNES C A, CREGHAN K A. Fundamentals of Delphi research methodology[M]. IGI Global: Hershey, 2018: 233-257.
[15]程果. 基于HTTP的动态自适应流媒体技术的研究[D].广州:广东工业大学,2017.
[16]柯尊旺,于炯,廖彬. 适应异构集群的Mesos多资源调度DRF增强算法[J].计算机应用,2016,36(5):1216-1221.
[17]GHODSI A, ZAHARIA M, HINDMAN B, et al. Dominant resource fairness: fair allocation of multiple resource types[C]// USENIX. 8th USENIX Symposium on Networked Systems Design and Implemention. Boston, USA: USENIX, 2011:24.
[18]FAN X, LANG B, ZHOU Y, et al. Adding network bandwidth resource management to Hadoop YARN[C]// IEEE. IEEE 2017 Seventh International Conference on Information Science and Technology. Da Nang,Vietnam: IEEE, 2017: 444-449.
[19]MESKAR E, LIANG B. Fair multi-resource allocation with external resource for mobile edge computing[C]// IEEE. IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).Honolulu, USA: IEEE, 2018: 184-189.
[20]COULSON N C, SOTIRIADIS S, BESSIS N. Adaptive microservice scaling for elastic applications[J]. IEEE Internet of Things Journal, 2020, 7(5): 4195-4202.
[21]VARGAS-SANTIAGO M, MORALES-ROSALES L, POMARES-HERNANDEZ S, et al. Autonomic web services enhanced by asynchronous checkpointing[J]. IEEE Access, 2018(6): 5538-5547.

备注/Memo

备注/Memo:
收稿日期:2020-03-20基金项目:国家重点研发计划项目(2017YFD0301303);安徽省级大学生创新训练计划项目(201910364204)作者简介:马志宇(1998-),男,安徽蚌埠人,本科,研究方向为大数据技术、智慧农业、人工智能。(E-mail)mzy@ahau.edu.cn通讯作者:乐毅,(E-mail)yyyue@ahau.edu.cn;张友华,(E-mail)zhangyh@ahau.edu.cn
更新日期/Last Update: 2020-11-16